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PREFACE

v

This book is an introduction to Java and computer programming that focuses on the 
essentials—and on effective learning. The book is designed to serve a wide range of 
student interests and abilities and is suitable for a first course in programming for 
computer scientists, engineers, and students in other disciplines. No prior program-
ming experience is required, and only a modest amount of high school algebra is 
needed. 

Here are the key features of this book:

Start objects early, teach object orientation gradually.
In Chapter 2, students learn how to use objects and classes from the standard library. 
Chapter 3 shows the mechanics of implementing classes from a given specification. 
Students then use simple objects as they master branches, loops, and arrays. Object-
oriented design starts in Chapter 8. This gradual approach allows students to use 
objects throughout their study of the core algorithmic topics, without teaching bad 
habits that must be un-learned later.

Guidance and worked examples help students succeed. 
Beginning programmers often ask “How do I start? Now what do I do?” Of course, 
an activity as complex as programming cannot be reduced to cookbook-style instruc-
tions. However, step-by-step guidance is immensely helpful for building confidence 
and providing an outline for the task at hand. “How To” guides help students with 
common programming tasks. Numerous Worked Examples demonstrate how to 
apply chapter concepts to interesting problems.

Problem solving strategies are made explicit.
Practical, step-by-step illustrations of techniques help students devise and evaluate 
solutions to programming problems. Introduced where they are most relevant, these 
strategies address barriers to success for many students. Strategies included are:
• Algorithm Design (with pseudocode)
• Tracing Objects
• First Do It By Hand (doing sample 

calculations by hand)
• Flowcharts
• Selecting Test Cases
• Hand-Tracing
• Storyboards

• Solve a  Simpler Problem First
• Adapting Algorithms 
• Discovering Algorithms by  

Manipulating Physical Objects
• Patterns for Object Data
• Thinking Recursively
• Estimating the Running Time of  

an Algorithm

Practice makes perfect. 
Of course, programming students need to be able to implement nontrivial programs, 
but they first need to have the confidence that they can succeed. Each section con-
tains numerous exercises that ask students to carry out progressively more complex 
tasks: trace code and understand its effects, produce program snippets from prepared 
parts, and complete simple programs. Additional review and programming problems 
are provided at the end of each chapter.

bbjeo_fm.indd   5 11/27/18   1:37 PM



vi Preface 

A visual approach motivates the reader and eases navigation. 
Photographs present visual analogies that explain the 
nature and behavior of computer concepts. Step-by-
step figures illustrate complex program operations. 
Syntax boxes and example tables present a variety 
of typical and special cases in a compact format. It 
is easy to get the “lay of the land” by browsing the 
visuals, before focusing on the textual material.

Focus on the essentials while being 
technically accurate. 
An encyclopedic coverage is not helpful for a begin-
ning programmer, but neither is the opposite—
reducing the material to a list of simplistic bullet points. In this book, the essentials are 
presented in digestible chunks, with separate notes that go deeper into good practices 
or language features when the reader is ready for the additional information. You will 
not find artificial over-simplifications that give an illusion of knowledge. 

Reinforce sound engineering practices.
A multitude of useful tips on software quality and common errors encourage the 
development of good programming habits. The optional testing track focuses on 
test-driven development, encouraging students to test their programs systematically.

Provide an optional graphics track.
Graphical shapes are splendid examples of objects. Many students enjoy writing pro-
grams that create drawings or use graphical user interfaces. If desired, these topics can 
be integrated into the course by using the materials at the end of Chapters 2, 3, and 10.

Engage with optional science and business exercises.
End-of-chapter exercises are enhanced with problems from scientific and business 
domains. Designed to engage students, the exercises illustrate the value of program-
ming in applied fields. 

New to This Edition
Adapted to Java Versions 8 Through 11
This edition takes advantage of modern Java features when they are pedagogically 
sensible. I continue to use “pure” interfaces with only abstract methods. Default, 
static, and private interface methods are introduced in a Special Topic. Lambda 
expressions are optional for user interface callback.

The “diamond” syntax for generic classes is introduced as a Special Topic in Chap-
ter 7 and used systematically starting with Chapter 15. Local type inference with the 
var keyword is described in a Special Topic. Useful features such as the try-with-
resources statement are integrated into the text. 

Interactive Learning
With this edition, interactive content is front and center. Immersive activities integrate 
with this text and engage students in activities designed to foster in-depth learning. 
Students don’t just watch animations and code traces, they work on generating  
them. Live code samples invite the reader to experiment and to learn programming 

© Terraxplorer/iStockphoto.

Visual features help the reader  
with navigation.
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Preface vii

constructs first hand. The activities provide instant feedback to show students what 
they did right and where they need to study more.

A Tour of the Book
The book can be naturally grouped into three parts, as illustrated by Figure 1. The 
organization of chapters offers the same flexibility as the previous edition; dependen-
cies among the chapters are also shown in the figure.

Part A: Fundamentals (Chapters 1–7)
Chapter 1 contains a brief introduction to computer science and Java programming. 
Chapter 2 shows how to manipulate objects of predefined classes. In Chapter 3, 

Figure 1
Chapter  
Dependencies

9. Inheritance 

10. Interfaces

13. Recursion

14. Sorting and
Searching

15. The Java 
Collections 
Framework

6. Iteration

8. Designing 
Classes

Fundamentals

Object-Oriented Design

Data Structures & Algorithms

eText Chapters

2. Using Objects

3. Implementing
Classes

4. Fundamental 
Data Types

5. Decisions

6. Loops

7. Arrays 
and Array Lists

11. Input/Output
and Exception

Handling

Sections 11.1 and 11.2
(text �le processing) can be 

covered with Chapter 6.

1. Introduction

12. Object-
Oriented Design

e

e

ee
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viii Preface 

you will build your own simple classes from given specifications. Fundamental data 
types, branches, loops, and arrays are covered in Chapters 4–7.

Part B: Object-Oriented Design (Chapters 8–12)
Chapter 8 takes up the subject of class design in a systematic fashion, and it intro-
duces a very simple subset of the UML notation. Chapter 9 covers inheritance and 
polymorphism, whereas Chapter 10 covers interfaces. Exception handling and basic 
file input/output are covered in Chapter 11. The exception hierarchy gives a useful 
example for inheritance. Chapter 12 contains an introduction to object-oriented 
design, including two significant case studies.

Part C: Data Structures and Algorithms (Chapters 13–15)
Chapters 13 through 15 (in the eText) contain an introduction to algorithms and 
data structures, covering recursion, sorting and searching, and the Java Collections 
Framework. These topics may be outside the scope of a one-semester course, but can 
be covered as desired after Chapter 7 (see Figure 1). Recursion, in Chapter 13, starts 
with simple examples and progresses to meaningful applications that would be dif-
ficult to implement iteratively. Chapter 14 covers quadratic sorting algorithms as well 
as merge sort, with an informal introduction to big-Oh notation. Each data structure 
is presented in the context of the standard Java collections library. You will learn the 
essential abstractions of the standard library (such as iterators, sets, and maps) as well 
as the performance characteristics of the various collections. 

Appendices
Many instructors find it highly beneficial to require a consistent style for all assign-
ments. If the style guide in Appendix E conflicts with instructor sentiment or local 
customs, however, it is available in electronic form so that it can be modified. Appen-
dices F–J are available in the eText.

A. The Basic Latin and Latin-1 Subsets of Unicode
B. Java Operator Summary
C. Java Reserved Word Summary
D. The Java Library
E. Java Language Coding Guidelines 
F. Tool Summary 
G. Number Systems 
H. UML Summary 
I. Java Syntax Summary 
J. HTML Summary 

Interactive eText Designed for Programming Students
Available online through wiley.com, vitalsource.com, or at your local bookstore, the 
enhanced eText features integrated student coding activities that foster in-depth 
learning. Designed by Cay Horstmann, these activities provide instant feedback to 
show students what they did right and where they need to study more. Students do 
more than just watch animations and code traces; they work on generating them right 
in the eText environment. For a preview of these activities, check out http://wiley.
com/college/sc/horstmann.
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Preface ix

Customized formats are also available in both print and digital formats and pro-
vide your students with curated content based on your unique syllabus. 

Please contact your Wiley sales rep for more information about any of these 
options.

Web Resources
This book is complemented by a complete suite of online resources. Go to www.wiley.
com/go/bjeo7 to visit the online companion sites, which include

• Source code for all example programs in the book and its Worked Examples, plus 
additional example programs.

• Worked Examples that apply the problem-solving steps in the book to other 
realistic examples.

• Lecture presentation slides (for instructors only).
• Solutions to all review and programming exercises (for instructors only).
• A test bank that focuses on skills, not just terminology (for instructors only). This 

extensive set of multiple-choice questions can be used with a word processor or 
imported into a course management system.

• CodeCheck®, an innovative online service that allows instructors to design their 
own automatically graded programming exercises.
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x Walkthrough 

6.3 The for Loop 183

6.3 The for Loop
It often happens that you want to execute a sequence of statements a given number of 
times. You can use a while loop that is controlled by a counter, as in the following 
example: 

int counter = 5; // Initialize the counter
while (counter <= 10) // Check the counter
{
   sum = sum + counter;
   counter++; // Update the counter 
}

Because this loop type is so common, there is a spe-
cial form for it, called the for loop (see Syntax 6.2). 

for (int counter = 5; counter <= 10; counter++)
{
   sum = sum + counter;
}

Some people call this loop count-controlled. In con-
trast, the while loop of the preceding section can 
be called an event-controlled loop because it exe-
cutes until an event occurs; namely that the balance 
reaches the target. Another commonly used term for 
a count-controlled loop is de�nite. You know from 
the outset that the loop body will be executed a de�-
nite number of times; ten times in our example. In 
contrast, you do not know how many iterations it 
takes to accumulate a target balance. Such a loop is 
called inde�nite.

Syntax 6.2 for Statement

for (int i = 5; i <= 10; i++)
{
   sum = sum + i;
}

This loop executes 6 times. 
   See Programming Tip 6.3.

This initialization
happens once 
before the loop starts.

The condition is 
checked before 
each iteration.

This update is 
executed after 
each iteration.

The variable i is 
defined only in this for loop. 

See Special Topic 6.1.

These three 
expressions should be related.
       See Programming Tip 6.1.

for (initialization; condition; update)
{
   statements
}

Syntax

The for loop is used 
when a value runs 
from a starting point 
to an ending point 
with a constant 
increment or 
decrement. 

© Enrico Fianchini/iStockphoto.

You can visualize the for loop as 
an orderly sequence of steps. 

Like a variable in a computer 
program, a parking space has 
an identifier and a contents. 

Analogies to everyday objects are 
used to explain the nature and behavior 
of concepts such as variables, data 
types, loops, and more.

Throughout each chapter, 
margin notes show where 
new concepts are introduced 
and provide an outline of key ideas. 

Annotated syntax boxes 
provide a quick, visual overview 
of new language constructs.

Annotations explain required 
components and point to more 
information on common errors 
or best practices associated 
with the syntax.

Walkthrough of the Learning Aids
The pedagogical elements in this book work together to focus on and reinforce key 
concepts and fundamental principles of programming, with additional tips and detail 
organized to support and deepen these fundamentals. In addition to traditional 
features, such as chapter objectives and a wealth of exercises, each chapter contains 
elements geared to today’s visual learner.
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Walkthrough xi

7.5 Problem Solving: Discovering Algorithms by Manipulating Physical Objects 333

Now how does that help us with our problem, switching the first and the second 
half of the array?

Let’s put the first coin into place, by swapping it with the fifth coin. However, as 
Java programmers, we will say that we swap the coins in positions 0 and 4:  

Next, we swap the coins in positions 1 and 5: 

In the same way that there can be a street named “Main Street” in di�erent cities, 
a Java program can have multiple variables with the same name.

Table 1  Variable Declarations in Java

Variable Name Comment

int width = 20; Declares an integer variable and initializes it with 20.

int perimeter = 4 * width; The initial value need not be a fixed value. (Of course, width
must have been previously declared.)

String greeting = "Hi!"; This variable has the type String and is initialized with the 
string “Hi”.

height = 30; Error: The type is missing. This statement is not a declaration 
but an assignment of a new value to an existing variable—see 
Section 2.2.5. 

int width = "20"; Error: You cannot initialize a number with the string “20”. 
(Note the quotation marks.)

int width; Declares an integer variable without initializing it. This can be a 
cause for errors—see Common Error 2.1.

int width, height; Declares two integer variables in a single statement. In this 
book, we will declare each variable in a separate statement.

HOW TO 6.1

Writing a Loop

This How To walks you through the process of 
implementing a loop statement. We will illustrate the 
steps with the following example problem.

Problem Statement Read twelve temperature 
values (one for each month) and display the num-
ber of the month with the highest temperature. For 
example, according to http://worldclimate.com, the 
average maximum temperatures for Death Valley are 
(in order by month, in degrees Celsius):

18.2 22.6 26.4 31.1 36.6 42.2
45.7 44.5 40.2 33.1 24.2 17.6

In this case, the month with the highest tempera-
ture (45.7 degrees Celsius) is July, and the program 
should display 7.

Step 1 Decide what work must be done inside the loop.

Every loop needs to do some kind of repetitive work, such as
• Reading another item.
• Updating a value (such as a bank balance or total).
• Incrementing a counter.
If you can’t �gure out what needs to go inside the loop, start by writing down the steps that 
you would take if you solved the problem by hand. For example, with the temperature reading 
problem, you might write

© Stevegeer/iStockphoto.

WORKED EXAMPLE 6.1

Credit Card Processing

Learn how to use a loop to remove spaces from a credit card 
number. See your eText or visit wiley.com/go/bjeo7.

© MorePixels/iStockphoto.

Memorable photos reinforce 
analogies and help students 
remember the concepts.

Problem Solving sections teach 
techniques for generating ideas and 
evaluating proposed solutions, often
using pencil and paper or other 
artifacts. These sections emphasize
that most of the planning and problem
solving that makes students successful
happens away from the computer.

Example tables support beginners 
with multiple, concrete examples. 
These tables point out common 
errors and present another quick 
reference to the section’s topic.

Worked Examples apply 
the steps in the How To to a 
di�erent example, showing 
how they can be used to 
plan, implement, and test 
a solution to another 
programming problem.

How To guides give step-by-step 
guidance for common programming 
tasks, emphasizing planning and 
testing. They answer the beginner’s 
question, “Now what do I do?” and 
integrate key concepts into a 
problem-solving sequence.
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xii Walkthrough 

•• Business E6.17 Currency conversion. Write a program 
that first asks the user to type today’s 
price for one dollar in Japanese yen, 
then reads U.S. dollar values and 
converts each to yen. Use 0 as a sentinel.

• Science P6.15 Radioactive decay of radioactive materials can be 
modeled by the equation A = A0e-t (log 2/h), where A is 
the amount of the material at time t, A0 is the amount 
at time 0, and h is the half-life. 
Technetium-99 is a radioisotope that is used in imaging 
of the brain. It has a half-life of 6 hours. Your program 
should display the relative amount A / A0 in a patient 
body every hour for 24 hours after receiving a dose.

The for loop neatly groups the initialization, condition, and update expressions 
together. However, it is important to realize that these expressions are not executed 
together (see Figure 3). 

• The initialization is executed once, before the loop is entered. 1

• The condition is checked before each iteration. 2 5

• The update is executed after each iteration. 4

Figure 3 
Execution of a 
for Loop

for (int counter = 5; counter <= 10; counter++)
{
   sum = sum + counter;
}

Initialize counter1

for (int counter = 5; counter <= 10; counter++)
{
   sum = sum + counter;
}

Check condition2

for (int counter = 5; counter <= 10; counter++)
{

sum = sum + counter;
}

Execute loop body3

for (int counter = 5; counter <= 10; counter++)
{
   sum = sum + counter;
}

Update counter4

for (int counter = 5; counter <= 10; counter++)
{
   sum = sum + counter;
}

Check condition again5

counter = 5

counter = 5

counter = 5

counter = 6

counter = 6

sec01/ElevatorSimulation.java

1 import java.util.Scanner;
2
3 /**
4 This program simulates an elevator panel that skips the 13th �oor.
5 */
6 public class ElevatorSimulation
7 {
8 public static void main(String[] args)
9    {  

10       Scanner in = new Scanner(System.in);
11       System.out.print("Floor: ");
12 int floor = in.nextInt();
13
14       // Adjust �oor if necessary
15
16       int actualFloor;
17 if (floor > 13)

Self-check exercises in the 
eText are designed to engage 
students with the new material
and check understanding before
they continue to the next topic.

Optional science and business 
exercises engage students with 
realistic applications of Java.

Program listings are carefully 
designed for easy reading, going 
well beyond simple color coding. 
Students can run and change the 
same programs right in the eText. 

Progressive �gures trace code 
segments to help students visualize 
the program �ow. Color is used 
consistently to make variables and 
other elements easily recognizable.
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Walkthrough xiii

When computers 
were first invented 

in the 1940s, a computer filled an 
entire room. The photo below shows 
the ENIAC (electronic numerical inte-
grator and computer), completed in 
1946 at the University of Pennsylvania. 
The ENIAC was used by the military 
to compute the trajectories of projec-
tiles. Nowadays, computing facilities 
of search engines, Internet shops, and 
social networks fill huge buildings 
called data centers. At the other end of 
the spectrum, computers are all around 
us. Your cell phone has a computer 
inside, as do many credit cards and fare 
cards for public transit. A modern car 
has several computers––to control the 
engine, brakes, lights, and the radio. 

This transit card contains a computer.

The advent of ubiqui-
tous computing changed 
many aspects of our 
lives. Factories used 
to employ people to 
do repetitive assembly 
tasks that are today car-
ried out by computer-
controlled robots, oper-
ated by a few people 
who know how to work 
with those computers. 
Books, music, and mov-
ies are nowadays often 
consumed on com-
puters, and comput-
ers are almost always 
involved in their production. The 
book that you are reading right now 

could not have been written without 
computers.

Computing & Society 1.1 Computers Are Everywhere

  
Common Error 7.4

Length and Size

Unfortunately, the Java syntax for determining the number of elements in an array, an array 
list, and a string is not at all consistent. It is a common error to confuse these. You just have to 
remember the correct syntax for every data type.

Data Type Number of Elements

Array a.length 

Array list a.size() 

String a.length() 

  
Programming Tip 5.5

Hand-Tracing

A very useful technique for understanding whether a program 
works correctly is called hand-tracing. You simulate the pro-
gram’s activity on a sheet of paper. You can use this method with 
pseudocode or Java code.

Get an index card, a cocktail napkin, or whatever sheet of 
paper is within reach. Make a column for each variable. Have the 
program code ready. Use a marker, such as a paper clip, to mark 
the current statement. In your mind, exe cute statements one at a 
time. Every time the value of a variable changes, cross out the old 
value and write the new value below the old one. 

For example, let’s trace the getTax method with the data from 
the program run above. When the TaxReturn object is constructed, 
the income instance variable is set to 80,000 and status is set to 
MARRIED. Then the getTax method is called. In lines 31 and 32 of Tax-
Return.java, tax1 and tax2 are initialized to 0. 
29 public double getTax()
30 {  
31    double tax1 = 0;
32    double tax2 = 0;
33    

Because status is not SINGLE, we move to the else 
branch of the outer if statement (line 46).
34    if (status == SINGLE)
35    {
36       if (income <= RATE1_SINGLE_LIMIT)
37       {
38          tax1 = RATE1 * income;
39       }
40       else
41       {
42          tax1 = RATE1 * RATE1_SINGLE_LIMIT;
43          tax2 = RATE2 * (income - RATE1_SINGLE_LIMIT);

© thomasd007/iStockphoto.

Hand-tracing helps you 
understand whether a 
program works correctly.

 income status tax1 tax2

 80000 MARRIED 0 0

  
Special Topic 11.2

File Dialog Boxes

In a program with a graphical user interface, you will want to use a �le dialog box (such as the 
one shown in the �g ure below) whenever the users of your program need to pick a �le. The 
JFileChooser class implements a �le dialog box for the Swing user-interface toolkit. 

The JFileChooser class has many options to �ne-tune the display of the dialog box, but in its 
most basic form it is quite simple: Construct a �le chooser object; then call the showOpenDialog 
or showSaveDialog method. Both methods show the same dialog box, but the button for select-
ing a �le is labeled “Open” or “Save”, depending on which method you call. 

For better placement of the dialog box on the screen, you can specify the user-interface 
component over which to pop up the dialog box. If you don’t care where the dialog box pops 
up, you can simply pass null. The showOpenDialog and showSaveDialog methods return either 
JFileChooser.APPROVE_OPTION, if the user has chosen a �le, or JFi leChooser.CANCEL_OPTION, if the 
user canceled the selection. If a �le was chosen, then you call the getSelectedFile method to 
obtain a File object that describes the �le. 

Here is a complete example: 

JFileChooser chooser = new JFileChooser();
Scanner in = null;
if (chooser.showOpenDialog(null) == JFileChooser.APPROVE_OPTION)
{ 
   File selectedFile = chooser.getSelectedFile();
   in = new Scanner(selectedFile);

}

EXAMPLE CODE See special_topic_2 of your eText or companion code for a program that demonstrates how to use a �le 
chooser.

Additional full code examples 
throughout the text provide 
complete programs for students 
to run and modify.

Common Errors describe the kinds 
of errors that students often make, 
with an explanation of why the errors 
occur, and what to do about them. 

Programming Tips explain 
good programming practices, 
and encourage students to be 
more productive with tips and 
techniques such as hand-tracing.

Special Topics present optional 
topics and provide additional 
explanation of others.  

Computing & Society presents social 
and historical topics on computing—for 
interest and to ful�ll the “historical and 
social context” requirements of the 
ACM/IEEE curriculum guidelines.
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xiv Walkthrough 

Interactive activities in the eText
engage students in active reading as they…

Create a memory diagram

Build an example table

Explore common algorithms

Trace through a code segment

Complete a program and 
get immediate feedback

Arrange code to ful�ll a task
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2

Just as you gather tools, study a project, and make a plan for 
tackling it, in this chapter you will gather up the basics you 
need to start learning to program. After a brief introduction 
to computer hardware, software, and programming in 
general, you will learn how to write and run your first 
Java program. You will also learn how to diagnose and 
fix programming errors, and how to use pseudocode to 
describe an algorithm—a step-by-step description of how 
to solve a problem—as you plan your computer programs.

1.1 Computer Programs
You have probably used a computer for work or fun. Many people use computers for 
everyday tasks such as electronic banking or writing a term paper. Computers are 
good for such tasks. They can handle repetitive chores, such as totaling up numbers 
or placing words on a page, without getting bored or exhausted. 

The flexibility of a computer is quite an amazing phenomenon. The same machine 
can balance your checkbook, lay out your term paper, and play a game. In contrast, 
other machines carry out a much nar rower range of tasks; a car drives and a toaster 
toasts. Computers can carry out a wide range of tasks because they execute different 
programs, each of which directs the computer to work on a specific task.

The computer itself is a machine that stores data (numbers, words, pictures), inter-
acts with devices (the monitor, the sound system, the printer), and executes programs. 
A computer program tells a computer, in minute detail, the sequence of steps that 
are needed to fulfill a task. The physical computer and periph eral devices are collec-
tively called the hardware. The programs the computer executes are called the 
soft ware. 

Today’s computer programs are so sophisticated that it is hard to believe that they 
are composed of extremely primitive instructions. A typical instruction may be one 
of the following:

• Put a red dot at a given screen position.
• Add up two numbers.
• If this value is negative, continue the program at a certain instruction.

The computer user has the illusion of smooth interaction because a program contains 
a huge number of such instructions, and because the computer can execute them at 
great speed.

The act of designing and implementing computer programs is called program-
ming. In this book, you will learn how to program a computer—that is, how to direct 
the computer to execute tasks.

To write a computer game with motion and sound effects or a word processor 
that supports fancy fonts and pictures is a complex task that requires a team of many 
highly-skilled programmers. Your first programming efforts will be more mundane. 
The concepts and skills you learn in this book form an important foundation, and 
you should not be disappointed if your first programs do not rival the sophis ticated 
software that is familiar to you. Actually, you will find that there is an immense thrill 
even in sim ple programming tasks. It is an amazing experience to see the computer 

Computers 
execute very basic 
instructions in  
rapid succession. 

A computer program 
is a sequence  
of instructions  
and decisions.

Programming is the 
act of designing 
and implementing 
computer programs.

© JanPietruszka/iStockphoto.

precisely and quickly carry out a task that would take you hours of drudgery, to 
make small changes in a program that lead to immediate improvements, and to see the 
computer become an extension of your mental powers.

1.2 The Anatomy of a Computer
To understand the programming process, you need to have a rudimentary under-
standing of the building blocks that make up a computer. We will look at a personal 
computer. Larger computers have faster, larger, or more powerful components, but 
they have fundamentally the same design.

At the heart of the computer lies the central 
processing unit (CPU) (see Figure 1). The inside 
wiring of the CPU is enormously complicated. 
For example, the Intel Core processor (a popular 
CPU for per sonal computers at the time of this 
writing) is composed of several hundred million 
structural elements, called transistors.

The CPU performs program control and data 
processing. That is, the CPU locates and exe-
cutes the program instructions; it carries out 
arithmetic operations such as addition, subtrac-
tion, multiplication, and division; it fetches data 
from external memory or devices and places 
processed data into storage. 

There are two kinds of storage. Primary stor-
age, or memory, is made from electronic circuits that can store data, provided they are 
supplied with electric power. Secondary storage, usually a hard disk (see Figure 2) 
or a solid-state drive, provides slower and less expensive storage that persists without 
electricity. A hard disk consists of rotating platters, which are coated with a mag netic 

© Amorphis/iStockphoto.

Figure 1 Central Processing Unit

The central 
processing unit (CPU) 
performs program 
control and  
data processing.

Storage devices 
include memory and 
secondary storage.

© PhotoDisc, Inc./Getty Images, Inc.

Figure 2 A Hard Disk
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4 Chapter 1  Introduction

material. A solid-state drive uses electronic components that can retain information 
without power, and without moving parts.

To interact with a human user, a computer requires peripheral devices. The com-
puter transmits infor mation (called output) to the user through a display screen, 
speakers, and printers. The user can enter information (called input) for the computer 
by using a keyboard or a pointing device such as a mouse.

Some computers are self-contained units, whereas others are interconnected 
through networks. Through the network cabling, the computer can read data and 
programs from central storage locations or send data to other computers. To the user 
of a networked computer, it may not even be obvious which data reside on the com-
puter itself and which are transmitted through the network. 

Figure 3 gives a schematic overview of the architecture of a personal computer. 
Program instructions and data (such as text, numbers, audio, or video) reside in sec-
ondary storage or elsewhere on the network. When a program is started, its instruc-
tions are brought into memory, where the CPU can read them. The CPU reads and 
executes one instruction at a time. As directed by these instructions, the CPU reads 
data, modifies it, and writes it back to memory or secondary storage. Some program 
instruc tions will cause the CPU to place dots on the display screen or printer or to 
vibrate the speaker. As these actions happen many times over and at great speed, the 
human user will perceive images and sound. Some program instructions read user 
input from the keyboard, mouse, touch sensor, or microphone. The program ana-
lyzes the nature of these inputs and then executes the next appropriate instruction.

Printer

Mouse/Trackpad

Keyboard

Microphone

Ports

CPU

Memory

Disk 
controller

Secondary storage

Monitor

Speakers

Internet
Network 
controller

Video camera

Figure 3 Schematic Design of a Personal Computer
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Computing & Society 1.1 Computers Are Everywhere

When computers were 
first invented in the 

1940s, a computer filled an entire 
room. The photo below shows the 
ENIAC (electronic numerical integrator 
and computer), completed in 1946 at 
the University of Pennsylvania. The 
ENIAC was used by the military to 
compute the trajectories of projectiles. 
Nowadays, computing facilities of 
search engines, Internet shops, and 
social networks fill huge buildings 
called data centers. At the other end of 
the spectrum, computers are all around 
us. Your cell phone has a computer 
inside, as do many credit cards and fare 
cards for public transit. A modern car 
has several computers––to control the 
engine, brakes, lights, and the radio.  

The advent of ubiqui-
tous computing changed 
many aspects of our 
lives. Factories used 
to employ people to 
do repetitive assembly 
tasks that are today car-
ried out by computer-
controlled robots, oper-
ated by a few people 
who know how to 
work with those com-
puters. Books, music, 
and movies nowadays 
are often consumed 
on computers, and 
computers are almost 
always involved in their production. 
The book that you are reading right 

now could not have been written with-
out computers.

Knowing about computers and 
how to program them has become an 
essential skill in many careers. Engi-
neers design computer-controlled cars 
and medical equipment that preserve 
lives. Computer scientists develop 
programs that help people come 
together to support social causes. For 
example, activists used social net-
works to share videos showing abuse 
by repressive regimes, and this infor-
mation was instrumental in changing 
public opinion.

As computers, large and small, 
become ever more embedded in 
our everyday lives, it is increasingly 
important for everyone to understand 
how they work, and how to work with 
them. As you use this book to learn 
how to program a computer, you will 
develop a good understanding of com-
puting fundamentals that will make 
you a more informed citizen and, per-
haps, a computing professional.

1.3 The Java Programming Language
In order to write a computer program, you need to provide a sequence of instructions 
that the CPU can execute. A computer program consists of a large number of simple 
CPU instructions, and it is tedious and error-prone to specify them one by one. For 
that reason, high-level programming languages have been created. In a high-level 

© Media Bakery.

© UPPA/Photoshot.

The ENIAC

© Maurice Savage/Alamy Limited.

This transit card contains a computer.
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6 Chapter 1  Introduction

language, you specify the actions that your program should carry out. A compiler 
translates the high-level instructions into the more detailed instructions (called 
machine code) required by the CPU. Many different programming languages have 
been designed for different purposes. 

In 1991, a group led by James Gosling and Patrick 
Naughton at Sun Microsystems designed a program-
ming language, code-named “Green”, for use in con-
sumer devices, such as intelligent television “set-top” 
boxes. The language was designed to be simple, secure, 
and usable for many dif ferent processor types. No cus-
tomer was ever found for this technology.

Gosling recounts that in 1994 the team realized, 
“We could write a really cool browser. It was one of the 
few things in the client/server main stream that needed 
some of the weird things we’d done: architecture neu-
tral, real-time, reliable, secure.” Java was introduced to 
an enthusiastic crowd at the SunWorld exhibition in 
1995, together with a browser that ran applets—Java 
code that can be located anywhere on the Internet. 
The figure at right shows a typical example of an 
applet. 

Since then, Java has grown at a phenomenal rate. 
Programmers have embraced the language because 
it is easier to use than its closest rival, C++. In addi-
tion, Java has a rich library that makes it possible 
to write portable programs that can bypass pro-
prietary operating systems—a feature that was 
eagerly sought by those who wanted to be inde-
pendent of those proprietary systems and was bit-
terly fought by their ven dors. A “micro edition” 
and an “enterprise edition” of the Java library 
allow Java programmers to target hardware ranging from smart cards to the largest 
Internet servers. 

Table 1  Java Versions (since Version 1.0 in 1996)

Version Year Important New Features Version Year Important New Features

1.1 1997 Inner classes 6 2006 Library improvements

1.2 1998 Swing, Collections framework 7 2011 Small language changes and library 
improvements

1.3 2000 Performance enhancements 8 2014 Function expressions, streams, new 
date/time library

1.4 2002 Assertions, XML support 9 2017 Modules

5 2004 Generic classes, enhanced for 
loop, auto-boxing, 

enumerations, annotations

10, 11 2018 Versions with incremental 
improvements are released  

every six months

© James Sullivan/Getty Images.

James Gosling

An Applet for Visualizing Molecules

Java was originally 
designed for 
programming 
consumer devices, 
but it was first 
successfully used 
to write Internet 
applets.

Because Java was designed for the Internet, it has two attributes that make it very 
suitable for begin ners: safety and portability. 

Java was designed so that anyone can execute programs in their browser without 
fear. The safety features of the Java language ensure that a program is terminated if it 
tries to do something unsafe. Having a safe environment is also helpful for anyone 
learning Java. When you make an error that results in unsafe behavior, your program 
is terminated and you receive an accurate error report. 

The other benefit of Java is portability. The same Java program will run, without 
change, on Windows, UNIX, Linux, or Macintosh. In order to achieve portability, 
the Java compiler does not translate Java programs directly into CPU instructions. 
Instead, compiled Java programs contain instructions for the Java virtual machine, a 
program that simulates a real CPU. Portability is another benefit for the begin ning 
student. You do not have to learn how to write programs for different platforms.

At this time, Java is firmly established as one of the most important languages for 
general-purpose pro gramming as well as for computer science instruction. However, 
although Java is a good language for beginners, it is not perfect, for three reasons.

Because Java was not specifically designed for students, no thought was given to 
making it really sim ple to write basic programs. A certain amount of technical machin-
ery is necessary to write even the simplest programs. This is not a problem for profes-
sional programmers, but it can be a nuisance for beginning students. As you learn how 
to program in Java, there will be times when you will be asked to be satisfied with a 
preliminary explanation and wait for more complete detail in a later chapter.

Java has been extended many times during its life—see Table 1. In this book, we 
assume that you have Java version 8 or later.

Finally, you cannot hope to learn all of Java in one course. The Java language itself 
is relatively simple, but Java contains a vast set of library packages that are required to 
write useful programs. There are pack ages for graphics, user-interface design, cryp-
tography, networking, sound, database storage, and many other purposes. Even 
expert Java programmers cannot hope to know the contents of all of the packages—
they just use those that they need for particular projects. 

Using this book, you should expect to learn a good deal about the Java language 
and about the most important packages. Keep in mind that the central goal of this 
book is not to make you memorize Java minutiae, but to teach you how to think 
about programming.  

1.4 Becoming Familiar with Your  
Programming Environment

Many students find that the tools they need as programmers are very different from the 
software with which they are familiar. You should spend some time making yourself 
familiar with your programming environment. Because computer systems vary widely, 
this book can only give an outline of the steps you need to follow. It is a good idea to 
participate in a hands-on lab, or to ask a knowledgeable friend to give you a tour.

Step 1 Start the Java development environment.

Computer systems differ greatly in this regard. On many computers there is an inte-
grated development environment in which you can write and test your programs. 

Java was designed to 
be safe and portable, 
benefiting both 
Internet users  
and students.

Java programs 
are distributed as 
instructions for a 
virtual machine, 
making them 
platform-independent.

Java has a very 
large library. Focus 
on learning those 
parts of the library 
that you need for 
your programming 
projects.

Set aside time to 
become familiar with 
the programming 
environment that 
you will use for your 
class work. 
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Because Java was not specifically designed for students, no thought was given to 
making it really sim ple to write basic programs. A certain amount of technical machin-
ery is necessary to write even the simplest programs. This is not a problem for profes-
sional programmers, but it can be a nuisance for beginning students. As you learn how 
to program in Java, there will be times when you will be asked to be satisfied with a 
preliminary explanation and wait for more complete detail in a later chapter.

Java has been extended many times during its life—see Table 1. In this book, we 
assume that you have Java version 8 or later.

Finally, you cannot hope to learn all of Java in one course. The Java language itself 
is relatively simple, but Java contains a vast set of library packages that are required to 
write useful programs. There are pack ages for graphics, user-interface design, cryp-
tography, networking, sound, database storage, and many other purposes. Even 
expert Java programmers cannot hope to know the contents of all of the packages—
they just use those that they need for particular projects. 

Using this book, you should expect to learn a good deal about the Java language 
and about the most important packages. Keep in mind that the central goal of this 
book is not to make you memorize Java minutiae, but to teach you how to think 
about programming.  

1.4 Becoming Familiar with Your  
Programming Environment

Many students find that the tools they need as programmers are very different from the 
software with which they are familiar. You should spend some time making yourself 
familiar with your programming environment. Because computer systems vary widely, 
this book can only give an outline of the steps you need to follow. It is a good idea to 
participate in a hands-on lab, or to ask a knowledgeable friend to give you a tour.

Step 1 Start the Java development environment.

Computer systems differ greatly in this regard. On many computers there is an inte-
grated development environment in which you can write and test your programs. 

Java was designed to 
be safe and portable, 
benefiting both 
Internet users  
and students.

Java programs 
are distributed as 
instructions for a 
virtual machine, 
making them 
platform-independent.

Java has a very 
large library. Focus 
on learning those 
parts of the library 
that you need for 
your programming 
projects.

Set aside time to 
become familiar with 
the programming 
environment that 
you will use for your 
class work. 
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Figure 4  
Running the  
HelloPrinter 
Program in an 
Integrated  
Development 
Environment

Java program

Program output

Click to compile and run

On other computers you first launch an editor, a program that functions like a word 
processor, in which you can enter your Java instructions; you then open a console 
window and type commands to execute your program. You need to find out how to 
get started with your environment.

Step 2 Write a simple program.

The traditional choice for the very first program in a new programming language is 
a program that dis plays a simple greeting: “Hello, World!”. Let us follow that tradi-
tion. Here is the “Hello, World!” pro gram in Java:

public class HelloPrinter
{
   public static void main(String[] args)
   {  
      System.out.println("Hello, World!");
   }
}

We will examine this program in the next section. 
No matter which programming environment you use, you begin your activity by 

typing the program statements into an editor window. 
Create a new file and call it HelloPrinter.java, using the steps that are appropriate 

for your environ ment. (If your environment requires that you supply a project name 
in addition to the file name, use the name hello for the project.) Enter the program 
instructions exactly as they are given above. Alternatively, locate the electronic copy 
in this book’s companion code and paste it into your editor.

As you write this program, pay careful attention to the various symbols, and keep 
in mind that Java is case sensitive. You must enter upper- and lowercase letters exactly 
as they appear in the program listing. You cannot type MAIN or PrintLn. If you are not 
careful, you will run into problems—see Common Error 1.2. 

An editor is a 
program for entering 
and modifying 
text, such as a Java 
program.

Java is case sensitive. 
You must be careful 
about distinguishing 
between upper- and 
lowercase letters.

Step 3 

Figure 5 Running the HelloPrinter Program in a Console Window

Run the program.

The process for running a program depends greatly on your programming environ-
ment. You may have to click a button or enter some commands. When you run the 
test program, the message

Hello, World!

will appear somewhere on the screen (see Figure 4 and Figure 5).
In order to run your program, the Java compiler translates your source files (that 

is, the statements that you wrote) into class files. (A class file contains instructions for 
the Java virtual machine.) After the compiler has translated your source code into 
virtual machine instructions, the virtual machine executes them. During execution, 
the virtual machine accesses a library of pre-written code, including the implementa-
tions of the System and PrintStream classes that are necessary for displaying the 
program’s output. Figure 6 summarizes the process of creating and running a Java 
program. In some programming environments, the compiler and virtual machine are 
essentially invisible to the programmer—they are automatically executed whenever 
you ask to run a Java program. In other environments, you need to launch the com-
piler and virtual machine explicitly. 

Step 4 Organize your work.

As a programmer, you write programs, try them out, and improve them. You store 
your programs in files. Files are stored in folders or directories. A folder can contain 

The Java compiler 
translates source 
code into class 
files that contain 
instructions for the 
Java virtual machine.

CompilerEditor Virtual
Machine

Running
ProgramSource File

Class �les

Library �les

Figure 6 From Source Code to Running Program
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