
Brief Java
Cay Horstmann

9/e

Early Objects

Brief Java

9/e

Early Objects

bbjeo_fm.indd 1 11/27/18 1:37 PM

bbjeo_fm.indd 2 11/27/18 1:37 PM

© Jeremy Woodhouse/Holly Wilmeth/Getty Images.

Brief Java

9/e

Early Objects

Cay Horstmann
San Jose State University

bbjeo_fm.indd 3 11/27/18 1:37 PM

VICE PRESIDENT AND EXECUTIVE PUBLISHER Laurie Rosatone
EXECUTIVE EDITOR Joanna Dingle
PROJECT MANAGER/DEVELOPMENT EDITOR Cindy Johnson
EDITORIAL ASSISTANT Crystal Franks
LEAD PRODUCT DESIGNER Tom Kulesa
MARKETING MANAGER Michael MacDougald
PRODUCTION MANAGER Nichole Urban
PRODUCTION MANAGER Nicole Repasky
PRODUCTION MANAGEMENT SERVICES Cindy Johnson, Publishing Services
PHOTO EDITOR Anindita Adiyal
COVER DESIGNER Joanna Vieira
COVER PHOTOS (tiger) © ArtMediaFactory/Shutterstock;

(rhino) © GUDKOV ANDREY/Shutterstock;
(bird) © Jeremy Woodhouse/Holly Wilmeth/
Getty Images; (tree frog) © kuritafsheen/Getty
Images.

This book was set in 10.5/12 Stempel Garamond LT Std by Publishing Services, and printed and bound by Quad
Graphics/Versailles. The cover was printed by Quad Graphics/Versailles.

Founded in 1807, John Wiley & Sons, Inc. has been a valued source of knowledge and understanding for more
than 200 years, helping people around the world meet their needs and fulfill their aspirations. Our company is
built on a foundation of principles that include responsibility to the communities we serve and where we live
and work. In 2008, we launched a Corporate Citizenship Initiative, a global effort to address the environmental,
social, economic, and ethical challenges we face in our business. Among the issues we are addressing are carbon
impact, paper specifications and procurement, ethical conduct within our business and among our vendors,
and community and charitable support. For more information, please visit our website: www.wiley.com/go/
citizenship.

This book is printed on acid-free paper. ∞

Copyright © 2019, 2016 John Wiley & Sons, Inc. All rights reserved. No part of this publication may be repro-
duced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photo-
copying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United
States Copyright Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Dan-
vers, MA 01923, (978) 750-8400, fax (978) 646-8600, or on the Web at www.copyright.com. Requests to the
Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111
River Street, Hoboken, NJ 07030-5774, (201) 748-6011, fax (201) 748-6008.

Evaluation copies are provided to qualified academics and professionals for review purposes only, for use in
their courses during the next academic year. These copies are licensed and may not be sold or transferred to a
third party. Upon completion of the review period, please return the evaluation copy to Wiley. Return instruc-
tions and a free of charge return shipping label are available at: www.wiley.com/go/returnlabel. If you have
chosen to adopt this textbook for use in your course, please accept this book as your complimentary desk copy.
Outside of the United States, please contact your local representative.

ePUB ISBN 978-1-119-49913-8

Printed in the United States of America.

The inside back cover will contain printing identification and country of origin if omitted from this page. In
addition, if the ISBN on the back cover differs from the ISBN on this page, the one on the back cover is correct.

10 9 8 7 6 5 4 3 2 1

PREFACE

v

This book is an introduction to Java and computer programming that focuses on the
essentials—and on effective learning. The book is designed to serve a wide range of
student interests and abilities and is suitable for a first course in programming for
computer scientists, engineers, and students in other disciplines. No prior program-
ming experience is required, and only a modest amount of high school algebra is
needed.

Here are the key features of this book:

Start objects early, teach object orientation gradually.
In Chapter 2, students learn how to use objects and classes from the standard library.
Chapter 3 shows the mechanics of implementing classes from a given specification.
Students then use simple objects as they master branches, loops, and arrays. Object-
oriented design starts in Chapter 8. This gradual approach allows students to use
objects throughout their study of the core algorithmic topics, without teaching bad
habits that must be un-learned later.

Guidance and worked examples help students succeed.
Beginning programmers often ask “How do I start? Now what do I do?” Of course,
an activity as complex as programming cannot be reduced to cookbook-style instruc-
tions. However, step-by-step guidance is immensely helpful for building confidence
and providing an outline for the task at hand. “How To” guides help students with
common programming tasks. Numerous Worked Examples demonstrate how to
apply chapter concepts to interesting problems.

Problem solving strategies are made explicit.
Practical, step-by-step illustrations of techniques help students devise and evaluate
solutions to programming problems. Introduced where they are most relevant, these
strategies address barriers to success for many students. Strategies included are:
• Algorithm Design (with pseudocode)
• Tracing Objects
• First Do It By Hand (doing sample

calculations by hand)
• Flowcharts
• Selecting Test Cases
• Hand-Tracing
• Storyboards

• Solve a Simpler Problem First
• Adapting Algorithms
• Discovering Algorithms by

Manipulating Physical Objects
• Patterns for Object Data
• Thinking Recursively
• Estimating the Running Time of

an Algorithm

Practice makes perfect.
Of course, programming students need to be able to implement nontrivial programs,
but they first need to have the confidence that they can succeed. Each section con-
tains numerous exercises that ask students to carry out progressively more complex
tasks: trace code and understand its effects, produce program snippets from prepared
parts, and complete simple programs. Additional review and programming problems
are provided at the end of each chapter.

bbjeo_fm.indd 5 11/27/18 1:37 PM

vi Preface

A visual approach motivates the reader and eases navigation.
Photographs present visual analogies that explain the
nature and behavior of computer concepts. Step-by-
step figures illustrate complex program operations.
Syntax boxes and example tables present a variety
of typical and special cases in a compact format. It
is easy to get the “lay of the land” by browsing the
visuals, before focusing on the textual material.

Focus on the essentials while being
technically accurate.
An encyclopedic coverage is not helpful for a begin-
ning programmer, but neither is the opposite—
reducing the material to a list of simplistic bullet points. In this book, the essentials are
presented in digestible chunks, with separate notes that go deeper into good practices
or language features when the reader is ready for the additional information. You will
not find artificial over-simplifications that give an illusion of knowledge.

Reinforce sound engineering practices.
A multitude of useful tips on software quality and common errors encourage the
development of good programming habits. The optional testing track focuses on
test-driven development, encouraging students to test their programs systematically.

Provide an optional graphics track.
Graphical shapes are splendid examples of objects. Many students enjoy writing pro-
grams that create drawings or use graphical user interfaces. If desired, these topics can
be integrated into the course by using the materials at the end of Chapters 2, 3, and 10.

Engage with optional science and business exercises.
End-of-chapter exercises are enhanced with problems from scientific and business
domains. Designed to engage students, the exercises illustrate the value of program-
ming in applied fields.

New to This Edition
Adapted to Java Versions 8 Through 11
This edition takes advantage of modern Java features when they are pedagogically
sensible. I continue to use “pure” interfaces with only abstract methods. Default,
static, and private interface methods are introduced in a Special Topic. Lambda
expressions are optional for user interface callback.

The “diamond” syntax for generic classes is introduced as a Special Topic in Chap-
ter 7 and used systematically starting with Chapter 15. Local type inference with the
var keyword is described in a Special Topic. Useful features such as the try-with-
resources statement are integrated into the text.

Interactive Learning
With this edition, interactive content is front and center. Immersive activities integrate
with this text and engage students in activities designed to foster in-depth learning.
Students don’t just watch animations and code traces, they work on generating
them. Live code samples invite the reader to experiment and to learn programming

© Terraxplorer/iStockphoto.

Visual features help the reader
with navigation.

bbjeo_fm.indd 6 11/27/18 1:37 PM

Preface vii

constructs first hand. The activities provide instant feedback to show students what
they did right and where they need to study more.

A Tour of the Book
The book can be naturally grouped into three parts, as illustrated by Figure 1. The
organization of chapters offers the same flexibility as the previous edition; dependen-
cies among the chapters are also shown in the figure.

Part A: Fundamentals (Chapters 1–7)
Chapter 1 contains a brief introduction to computer science and Java programming.
Chapter 2 shows how to manipulate objects of predefined classes. In Chapter 3,

Figure 1
Chapter
Dependencies

9. Inheritance

10. Interfaces

13. Recursion

14. Sorting and
Searching

15. The Java
Collections
Framework

6. Iteration

8. Designing
Classes

Fundamentals

Object-Oriented Design

Data Structures & Algorithms

eText Chapters

2. Using Objects

3. Implementing
Classes

4. Fundamental
Data Types

5. Decisions

6. Loops

7. Arrays
and Array Lists

11. Input/Output
and Exception

Handling

Sections 11.1 and 11.2
(text �le processing) can be

covered with Chapter 6.

1. Introduction

12. Object-
Oriented Design

e

e

ee

bbjeo_fm.indd 7 11/27/18 1:37 PM

viii Preface

you will build your own simple classes from given specifications. Fundamental data
types, branches, loops, and arrays are covered in Chapters 4–7.

Part B: Object-Oriented Design (Chapters 8–12)
Chapter 8 takes up the subject of class design in a systematic fashion, and it intro-
duces a very simple subset of the UML notation. Chapter 9 covers inheritance and
polymorphism, whereas Chapter 10 covers interfaces. Exception handling and basic
file input/output are covered in Chapter 11. The exception hierarchy gives a useful
example for inheritance. Chapter 12 contains an introduction to object-oriented
design, including two significant case studies.

Part C: Data Structures and Algorithms (Chapters 13–15)
Chapters 13 through 15 (in the eText) contain an introduction to algorithms and
data structures, covering recursion, sorting and searching, and the Java Collections
Framework. These topics may be outside the scope of a one-semester course, but can
be covered as desired after Chapter 7 (see Figure 1). Recursion, in Chapter 13, starts
with simple examples and progresses to meaningful applications that would be dif-
ficult to implement iteratively. Chapter 14 covers quadratic sorting algorithms as well
as merge sort, with an informal introduction to big-Oh notation. Each data structure
is presented in the context of the standard Java collections library. You will learn the
essential abstractions of the standard library (such as iterators, sets, and maps) as well
as the performance characteristics of the various collections.

Appendices
Many instructors find it highly beneficial to require a consistent style for all assign-
ments. If the style guide in Appendix E conflicts with instructor sentiment or local
customs, however, it is available in electronic form so that it can be modified. Appen-
dices F–J are available in the eText.

A. The Basic Latin and Latin-1 Subsets of Unicode
B. Java Operator Summary
C. Java Reserved Word Summary
D. The Java Library
E. Java Language Coding Guidelines
F. Tool Summary
G. Number Systems
H. UML Summary
I. Java Syntax Summary
J. HTML Summary

Interactive eText Designed for Programming Students
Available online through wiley.com, vitalsource.com, or at your local bookstore, the
enhanced eText features integrated student coding activities that foster in-depth
learning. Designed by Cay Horstmann, these activities provide instant feedback to
show students what they did right and where they need to study more. Students do
more than just watch animations and code traces; they work on generating them right
in the eText environment. For a preview of these activities, check out http://wiley.
com/college/sc/horstmann.

bbjeo_fm.indd 8 11/27/18 1:37 PM

Preface ix

Customized formats are also available in both print and digital formats and pro-
vide your students with curated content based on your unique syllabus.

Please contact your Wiley sales rep for more information about any of these
options.

Web Resources
This book is complemented by a complete suite of online resources. Go to www.wiley.
com/go/bjeo7 to visit the online companion sites, which include

• Source code for all example programs in the book and its Worked Examples, plus
additional example programs.

• Worked Examples that apply the problem-solving steps in the book to other
realistic examples.

• Lecture presentation slides (for instructors only).
• Solutions to all review and programming exercises (for instructors only).
• A test bank that focuses on skills, not just terminology (for instructors only). This

extensive set of multiple-choice questions can be used with a word processor or
imported into a course management system.

• CodeCheck®, an innovative online service that allows instructors to design their
own automatically graded programming exercises.

bbjeo_fm.indd 9 11/27/18 1:37 PM

x Walkthrough

6.3 The for Loop 183

6.3 The for Loop
It often happens that you want to execute a sequence of statements a given number of
times. You can use a while loop that is controlled by a counter, as in the following
example:

int counter = 5; // Initialize the counter
while (counter <= 10) // Check the counter
{
 sum = sum + counter;
 counter++; // Update the counter
}

Because this loop type is so common, there is a spe-
cial form for it, called the for loop (see Syntax 6.2).

for (int counter = 5; counter <= 10; counter++)
{
 sum = sum + counter;
}

Some people call this loop count-controlled. In con-
trast, the while loop of the preceding section can
be called an event-controlled loop because it exe-
cutes until an event occurs; namely that the balance
reaches the target. Another commonly used term for
a count-controlled loop is de�nite. You know from
the outset that the loop body will be executed a de�-
nite number of times; ten times in our example. In
contrast, you do not know how many iterations it
takes to accumulate a target balance. Such a loop is
called inde�nite.

Syntax 6.2 for Statement

for (int i = 5; i <= 10; i++)
{
 sum = sum + i;
}

This loop executes 6 times.
 See Programming Tip 6.3.

This initialization
happens once
before the loop starts.

The condition is
checked before
each iteration.

This update is
executed after
each iteration.

The variable i is
defined only in this for loop.

See Special Topic 6.1.

These three
expressions should be related.
 See Programming Tip 6.1.

for (initialization; condition; update)
{
 statements
}

Syntax

The for loop is used
when a value runs
from a starting point
to an ending point
with a constant
increment or
decrement.

© Enrico Fianchini/iStockphoto.

You can visualize the for loop as
an orderly sequence of steps.

Like a variable in a computer
program, a parking space has
an identifier and a contents.

Analogies to everyday objects are
used to explain the nature and behavior
of concepts such as variables, data
types, loops, and more.

Throughout each chapter,
margin notes show where
new concepts are introduced
and provide an outline of key ideas.

Annotated syntax boxes
provide a quick, visual overview
of new language constructs.

Annotations explain required
components and point to more
information on common errors
or best practices associated
with the syntax.

Walkthrough of the Learning Aids
The pedagogical elements in this book work together to focus on and reinforce key
concepts and fundamental principles of programming, with additional tips and detail
organized to support and deepen these fundamentals. In addition to traditional
features, such as chapter objectives and a wealth of exercises, each chapter contains
elements geared to today’s visual learner.

bbjeo_fm.indd 10 11/27/18 1:37 PM

Walkthrough xi

7.5 Problem Solving: Discovering Algorithms by Manipulating Physical Objects 333

Now how does that help us with our problem, switching the first and the second
half of the array?

Let’s put the first coin into place, by swapping it with the fifth coin. However, as
Java programmers, we will say that we swap the coins in positions 0 and 4:

Next, we swap the coins in positions 1 and 5:

In the same way that there can be a street named “Main Street” in di�erent cities,
a Java program can have multiple variables with the same name.

Table 1 Variable Declarations in Java

Variable Name Comment

int width = 20; Declares an integer variable and initializes it with 20.

int perimeter = 4 * width; The initial value need not be a fixed value. (Of course, width
must have been previously declared.)

String greeting = "Hi!"; This variable has the type String and is initialized with the
string “Hi”.

height = 30; Error: The type is missing. This statement is not a declaration
but an assignment of a new value to an existing variable—see
Section 2.2.5.

int width = "20"; Error: You cannot initialize a number with the string “20”.
(Note the quotation marks.)

int width; Declares an integer variable without initializing it. This can be a
cause for errors—see Common Error 2.1.

int width, height; Declares two integer variables in a single statement. In this
book, we will declare each variable in a separate statement.

HOW TO 6.1

Writing a Loop

This How To walks you through the process of
implementing a loop statement. We will illustrate the
steps with the following example problem.

Problem Statement Read twelve temperature
values (one for each month) and display the num-
ber of the month with the highest temperature. For
example, according to http://worldclimate.com, the
average maximum temperatures for Death Valley are
(in order by month, in degrees Celsius):

18.2 22.6 26.4 31.1 36.6 42.2
45.7 44.5 40.2 33.1 24.2 17.6

In this case, the month with the highest tempera-
ture (45.7 degrees Celsius) is July, and the program
should display 7.

Step 1 Decide what work must be done inside the loop.

Every loop needs to do some kind of repetitive work, such as
• Reading another item.
• Updating a value (such as a bank balance or total).
• Incrementing a counter.
If you can’t �gure out what needs to go inside the loop, start by writing down the steps that
you would take if you solved the problem by hand. For example, with the temperature reading
problem, you might write

© Stevegeer/iStockphoto.

WORKED EXAMPLE 6.1

Credit Card Processing

Learn how to use a loop to remove spaces from a credit card
number. See your eText or visit wiley.com/go/bjeo7.

© MorePixels/iStockphoto.

Memorable photos reinforce
analogies and help students
remember the concepts.

Problem Solving sections teach
techniques for generating ideas and
evaluating proposed solutions, often
using pencil and paper or other
artifacts. These sections emphasize
that most of the planning and problem
solving that makes students successful
happens away from the computer.

Example tables support beginners
with multiple, concrete examples.
These tables point out common
errors and present another quick
reference to the section’s topic.

Worked Examples apply
the steps in the How To to a
di�erent example, showing
how they can be used to
plan, implement, and test
a solution to another
programming problem.

How To guides give step-by-step
guidance for common programming
tasks, emphasizing planning and
testing. They answer the beginner’s
question, “Now what do I do?” and
integrate key concepts into a
problem-solving sequence.

bbjeo_fm.indd 11 11/27/18 1:37 PM

xii Walkthrough

•• Business E6.17 Currency conversion. Write a program
that first asks the user to type today’s
price for one dollar in Japanese yen,
then reads U.S. dollar values and
converts each to yen. Use 0 as a sentinel.

• Science P6.15 Radioactive decay of radioactive materials can be
modeled by the equation A = A0e-t (log 2/h), where A is
the amount of the material at time t, A0 is the amount
at time 0, and h is the half-life.
Technetium-99 is a radioisotope that is used in imaging
of the brain. It has a half-life of 6 hours. Your program
should display the relative amount A / A0 in a patient
body every hour for 24 hours after receiving a dose.

The for loop neatly groups the initialization, condition, and update expressions
together. However, it is important to realize that these expressions are not executed
together (see Figure 3).

• The initialization is executed once, before the loop is entered. 1

• The condition is checked before each iteration. 2 5

• The update is executed after each iteration. 4

Figure 3
Execution of a
for Loop

for (int counter = 5; counter <= 10; counter++)
{
 sum = sum + counter;
}

Initialize counter1

for (int counter = 5; counter <= 10; counter++)
{
 sum = sum + counter;
}

Check condition2

for (int counter = 5; counter <= 10; counter++)
{

sum = sum + counter;
}

Execute loop body3

for (int counter = 5; counter <= 10; counter++)
{
 sum = sum + counter;
}

Update counter4

for (int counter = 5; counter <= 10; counter++)
{
 sum = sum + counter;
}

Check condition again5

counter = 5

counter = 5

counter = 5

counter = 6

counter = 6

sec01/ElevatorSimulation.java

1 import java.util.Scanner;
2
3 /**
4 This program simulates an elevator panel that skips the 13th �oor.
5 */
6 public class ElevatorSimulation
7 {
8 public static void main(String[] args)
9 {

10 Scanner in = new Scanner(System.in);
11 System.out.print("Floor: ");
12 int floor = in.nextInt();
13
14 // Adjust �oor if necessary
15
16 int actualFloor;
17 if (floor > 13)

Self-check exercises in the
eText are designed to engage
students with the new material
and check understanding before
they continue to the next topic.

Optional science and business
exercises engage students with
realistic applications of Java.

Program listings are carefully
designed for easy reading, going
well beyond simple color coding.
Students can run and change the
same programs right in the eText.

Progressive �gures trace code
segments to help students visualize
the program �ow. Color is used
consistently to make variables and
other elements easily recognizable.

bbjeo_fm.indd 12 11/27/18 1:37 PM

Walkthrough xiii

When computers
were first invented

in the 1940s, a computer filled an
entire room. The photo below shows
the ENIAC (electronic numerical inte-
grator and computer), completed in
1946 at the University of Pennsylvania.
The ENIAC was used by the military
to compute the trajectories of projec-
tiles. Nowadays, computing facilities
of search engines, Internet shops, and
social networks fill huge buildings
called data centers. At the other end of
the spectrum, computers are all around
us. Your cell phone has a computer
inside, as do many credit cards and fare
cards for public transit. A modern car
has several computers––to control the
engine, brakes, lights, and the radio.

This transit card contains a computer.

The advent of ubiqui-
tous computing changed
many aspects of our
lives. Factories used
to employ people to
do repetitive assembly
tasks that are today car-
ried out by computer-
controlled robots, oper-
ated by a few people
who know how to work
with those computers.
Books, music, and mov-
ies are nowadays often
consumed on com-
puters, and comput-
ers are almost always
involved in their production. The
book that you are reading right now

could not have been written without
computers.

Computing & Society 1.1 Computers Are Everywhere

Common Error 7.4

Length and Size

Unfortunately, the Java syntax for determining the number of elements in an array, an array
list, and a string is not at all consistent. It is a common error to confuse these. You just have to
remember the correct syntax for every data type.

Data Type Number of Elements

Array a.length

Array list a.size()

String a.length()

Programming Tip 5.5

Hand-Tracing

A very useful technique for understanding whether a program
works correctly is called hand-tracing. You simulate the pro-
gram’s activity on a sheet of paper. You can use this method with
pseudocode or Java code.

Get an index card, a cocktail napkin, or whatever sheet of
paper is within reach. Make a column for each variable. Have the
program code ready. Use a marker, such as a paper clip, to mark
the current statement. In your mind, exe cute statements one at a
time. Every time the value of a variable changes, cross out the old
value and write the new value below the old one.

For example, let’s trace the getTax method with the data from
the program run above. When the TaxReturn object is constructed,
the income instance variable is set to 80,000 and status is set to
MARRIED. Then the getTax method is called. In lines 31 and 32 of Tax-
Return.java, tax1 and tax2 are initialized to 0.
29 public double getTax()
30 {
31 double tax1 = 0;
32 double tax2 = 0;
33

Because status is not SINGLE, we move to the else
branch of the outer if statement (line 46).
34 if (status == SINGLE)
35 {
36 if (income <= RATE1_SINGLE_LIMIT)
37 {
38 tax1 = RATE1 * income;
39 }
40 else
41 {
42 tax1 = RATE1 * RATE1_SINGLE_LIMIT;
43 tax2 = RATE2 * (income - RATE1_SINGLE_LIMIT);

© thomasd007/iStockphoto.

Hand-tracing helps you
understand whether a
program works correctly.

 income status tax1 tax2

 80000 MARRIED 0 0

Special Topic 11.2

File Dialog Boxes

In a program with a graphical user interface, you will want to use a �le dialog box (such as the
one shown in the �g ure below) whenever the users of your program need to pick a �le. The
JFileChooser class implements a �le dialog box for the Swing user-interface toolkit.

The JFileChooser class has many options to �ne-tune the display of the dialog box, but in its
most basic form it is quite simple: Construct a �le chooser object; then call the showOpenDialog
or showSaveDialog method. Both methods show the same dialog box, but the button for select-
ing a �le is labeled “Open” or “Save”, depending on which method you call.

For better placement of the dialog box on the screen, you can specify the user-interface
component over which to pop up the dialog box. If you don’t care where the dialog box pops
up, you can simply pass null. The showOpenDialog and showSaveDialog methods return either
JFileChooser.APPROVE_OPTION, if the user has chosen a �le, or JFi leChooser.CANCEL_OPTION, if the
user canceled the selection. If a �le was chosen, then you call the getSelectedFile method to
obtain a File object that describes the �le.

Here is a complete example:

JFileChooser chooser = new JFileChooser();
Scanner in = null;
if (chooser.showOpenDialog(null) == JFileChooser.APPROVE_OPTION)
{
 File selectedFile = chooser.getSelectedFile();
 in = new Scanner(selectedFile);

}

EXAMPLE CODE See special_topic_2 of your eText or companion code for a program that demonstrates how to use a �le
chooser.

Additional full code examples
throughout the text provide
complete programs for students
to run and modify.

Common Errors describe the kinds
of errors that students often make,
with an explanation of why the errors
occur, and what to do about them.

Programming Tips explain
good programming practices,
and encourage students to be
more productive with tips and
techniques such as hand-tracing.

Special Topics present optional
topics and provide additional
explanation of others.

Computing & Society presents social
and historical topics on computing—for
interest and to ful�ll the “historical and
social context” requirements of the
ACM/IEEE curriculum guidelines.

bbjeo_fm.indd 13 11/27/18 1:37 PM

xiv Walkthrough

Interactive activities in the eText
engage students in active reading as they…

Create a memory diagram

Build an example table

Explore common algorithms

Trace through a code segment

Complete a program and
get immediate feedback

Arrange code to ful�ll a task

bbjeo_fm.indd 14 11/27/18 2:30 PM

Acknowledgments xv

Acknowledgments
Many thanks to Joanna Dingle, Crystal Franks, Graig Donini, and Michael Mac-
Dougald at John Wiley & Sons, and Vickie Piercey at Publishing Services for their
help with this project. An especially deep acknowledgment and thanks goes to Cindy
Johnson for her hard work, sound judgment, and amazing attention to detail.

Special thanks to Stephen Gilbert, Orange Coast College, for his excellent help
with the interactive exercises.

Many thanks to the individuals who worked through the many new activities in
this edition, reviewed the manuscript, made valuable suggestions, and brought errors
and omissions to my attention. They include:

Radhouane Chouchane, Columbus State University
Sussan Einakian, California Polytechnic State University
Jon Hanrath, Illinois Institute of Technology
Brian King, Bucknell University
Kathleen O’Brien, San Jose State University
Eman Saleh, University of Georgia
William Wei, New York Institute of Technology

Each new edition builds on the suggestions and experiences of prior reviewers, con-
tributors, and users. I am grateful for the invaluable contributions these individuals
have made:

Eric Aaron, Wesleyan University
James Agnew, Anne Arundel

Community College
Tim Andersen, Boise State University
Ivan Bajic, San Diego State University
Greg Ballinger, Miami Dade College
Ted Bangay, Sheridan Institute

of Technology
Ian Barland, Radford University
George Basham, Franklin University
Jon Beck, Truman State University
Sambit Bhattacharya, Fayetteville

State University
Rick Birney, Arizona State University
Paul Bladek, Edmonds Community

College
Matt Boutell, Rose-Hulman Institute of

Technology
Joseph Bowbeer, Vizrea Corporation
Timothy A. Budd, Oregon State

University
John Bundy, DeVry University Chicago
Robert P. Burton, Brigham Young

University
Frank Butt, IBM

Jerry Cain, Stanford University
Adam Cannon, Columbia University
Michael Carney, Finger Lakes

Community College
Robin Carr, Drexel University
Christopher Cassa, Massachusetts

Institute of Technology
Nancy Chase, Gonzaga University
Dr. Suchindran S. Chatterjee, Arizona

State University
Archana Chidanandan, Rose-Hulman

Institute of Technology
Vincent Cicirello, The Richard Stockton

College of New Jersey
Gerald Cohen, The Richard Stockton

College of New Jersey
Teresa Cole, Boise State University
Deborah Coleman, Rochester Institute

of Technology
Tina Comston, Franklin University
Lennie Cooper, Miami Dade College
Jose Cordova, University of Louisiana,

Monroe
Valentino Crespi, California State

University, Los Angeles

bbjeo_fm.indd 15 11/27/18 1:37 PM

xvi Acknowledgments

Jim Cross, Auburn University
Russell Deaton, University

of Arkansas
Geoffrey Decker, Northern Illinois

University
Suzanne Dietrich, Arizona State

University,West Campus
Mike Domaratzki, University of

Manitoba
H. E. Dunsmore, Purdue University
Robert Duvall, Duke University
Sherif Elfayoumy, University of

North Florida
Eman El-Sheikh, University of

West Florida
Henry A. Etlinger, Rochester Institute of

Technology
John Fendrich, Bradley University
David Freer, Miami Dade College
John Fulton, Franklin University
David Geary, Sabreware, Inc.
Margaret Geroch, Wheeling Jesuit

University
Ahmad Ghafarian, North Georgia

College & State University
Rick Giles, Acadia University
Stacey Grasso, College of San Mateo
Jianchao Han, California State

University, Dominguez Hills
Lisa Hansen, Western New England

College
Elliotte Harold
Eileen Head, Binghamton University
Cecily Heiner, University of Utah
Guy Helmer, Iowa State University
Ed Holden, Rochester Institute

of Technology
Brian Howard, Depauw University
Lubomir Ivanov, Iona College
Norman Jacobson, University of

California, Irvine
Steven Janke, Colorado College
Curt Jones, Bloomsburg University
Mark Jones, Lock Haven University of

Pennsylvania
Dr. Mustafa Kamal, University of

Central Missouri

Aaron Keen, California Polytechnic
State University, San Luis Obispo

Mugdha Khaladkar, New Jersey Institute
of Technology

Gary J. Koehler, University of Florida
Elliot Koffman, Temple University
Ronald Krawitz, DeVry University
Norm Krumpe, Miami University Ohio
Jim Leone, Rochester Institute

of Technology
Kevin Lillis, St. Ambrose University
Darren Lim, Siena College
Hong Lin, DeVry University
Kathy Liszka, University of Akron
Hunter Lloyd, Montana State

University
Youmin Lu, Bloomsburg University
Peter Lutz, Rochester Institute of

Technology
Kuber Maharjan, Purdue University

College of Technology at Columbus
John S. Mallozzi, Iona College
John Martin, North Dakota State

University
Jeanna Matthews, Clarkson University
Patricia McDermott-Wells, Florida

International University
Scott McElfresh, Carnegie Mellon

University
Joan McGrory, Christian Brothers

University
Carolyn Miller, North Carolina

State University
Sandeep R. Mitra, State University

of New York, Brockport
Teng Moh, San Jose State University
Bill Mongan, Drexel University
John Moore, The Citadel
Jose-Arturo Mora-Soto, Jesica Rivero-

Espinosa, and Julio-Angel Cano-
Romero, University
of Madrid

Faye Navabi, Arizona State University
Parviz Partow-Navid, California State

University, Los Angeles
George Novacky, University

of Pittsburgh

bbjeo_fm.indd 16 11/27/18 1:37 PM

Acknowledgments xvii

Kevin O’Gorman, California
Polytechnic State University, San Luis
Obispo

Michael Olan, Richard Stockton College
Mimi Opkins, California State

University Long Beach
Derek Pao, City University of

Hong Kong
Kevin Parker, Idaho State University
Jim Perry, Ulster County Community

College
Cornel Pokorny, California Polytechnic

State University,
San Luis Obispo

Roger Priebe, University of Texas,
Austin

C. Robert Putnam, California State
University, Northridge

Kai Qian, Southern Polytechnic
State University

Cyndi Rader, Colorado School
of Mines

Neil Rankin, Worcester Polytechnic
Institute

Brad Rippe, Fullerton College
Pedro I. Rivera Vega, University

of Puerto Rico, Mayaguez
Daniel Rogers, SUNY Brockport
Chaman Lal Sabharwal, Missouri

University of Science and Technology
Katherine Salch, Illinois Central College
John Santore, Bridgewater State College
Javad Shakib, DeVry University
Carolyn Schauble, Colorado State

University
Brent Seales, University of Kentucky
Christian Shin, SUNY Geneseo
Charlie Shu, Franklin University
Jeffrey Six, University of Delaware
Don Slater, Carnegie Mellon University
Ken Slonneger, University of Iowa
Aurelia Smith, Columbus State

University
Donald Smith, Columbia College
Joslyn A. Smith, Florida International

University

Stephanie Smullen, University of
Tennessee, Chattanooga

Robert Strader, Stephen F. Austin
State University

Monica Sweat, Georgia Institute
of Technology

Peter Stanchev, Kettering University
Aakash Taneja, The Richard Stockton

College of New Jersey
Craig Tanis, University of Tennessee at

Chattanooga
Shannon Tauro, University of

California, Irvine
Ron Taylor, Wright State University
Russell Tessier, University of

Massachusetts, Amherst
Jonathan L. Tolstedt, North Dakota

State University
David Vineyard, Kettering University
Joseph Vybihal, McGill University
Xiaoming Wei, Iona College
Jonathan S. Weissman, Finger Lakes

Community College
Todd Whittaker, Franklin University
Robert Willhoft, Roberts Wesleyan

College
Brent Wilson, George Fox University
Katherine Winters, University of

Tennessee at Chattanooga
Lea Wittie, Bucknell University
David Womack, University of Texas

at San Antonio
David Woolbright, Columbus State

University
Tom Wulf, University of Cincinnati
Catherine Wyman, DeVry University
Arthur Yanushka, Christian Brothers

University
Qi Yu, Rochester Institute of Technology
Salih Yurttas, Texas A&M University

bbjeo_fm.indd 17 11/27/18 1:37 PM

bbjeo_fm.indd 18 11/27/18 1:37 PM

CONTENTS

xix

PREFACE v

SPECIAL FEATURES xxvi

INTRODUCTION 1

1.1 Computer Programs 2

1.2 The Anatomy of a Computer 3

1.3 The Java Programming Language 5

1.4 Becoming Familiar with Your
Programming Environment 7

1.5 Analyzing Your First Program 11

1.6 Errors 13

1.7 PROBLEM SOLVING Algorithm Design 15

The Algorithm Concept 15
An Algorithm for Solving an
Investment Problem 16
Pseudocode 17
From Algorithms to Programs 18

HT 1 Describing an Algorithm with
Pseudocode 18

WE 1 Writing an Algorithm for Tiling a Floor 20

USING OBJECTS 23

2.1 Objects and Classes 24

Using Objects 24
Classes 25

2.2 Variables 26

Variable Declarations 26
Types 28
Names 29
Comments 30
Assignment 30

ST 1 Variable Type Inference 33

2.3 Calling Methods 33

The Public Interface of a Class 33
Method Arguments 34
Return Values 35
Method Declarations 36

2.4 Constructing Objects 38

2.5 Accessor and Mutator Methods 40

2.6 The API Documentation 41
Browsing the API Documentation 41
Packages 43

2.7 Implementing a Test Program 44
ST 2 Testing Classes in an Interactive

Environment 45

WE 1 How Many Days Have You Been Alive? 46

WE 2 Working with Pictures 46

2.8 Object References 46

2.9 Graphical Applications 49

Frame Windows 50
Drawing on a Component 51
Displaying a Component in a Frame 53

2.10 Ellipses, Lines, Text, and Color 54

Ellipses and Circles 54
Lines 55
Drawing Text 56
Colors 56

IMPLEMENTING CLASSES 61

3.1 Instance Variables and Encapsulation 62

Instance Variables 62
The Methods of the Counter Class 64
Encapsulation 64

3.2 Specifying the Public Interface
of a Class 66

Specifying Methods 66
Specifying Constructors 67
Using the Public Interface 69
Commenting the Public Interface 69

3.3 Providing the Class Implementation 72

Providing Instance Variables 72
Providing Constructors 73
Providing Methods 75

HT 1 Implementing a Class 78

WE 1 Making a Simple Menu 81

1

2

3

bbjeo_fm.indd 19 11/27/18 1:37 PM

xx Contents

3.4 Unit Testing 81

3.5 PROBLEM SOLVING Tracing Objects 84

3.6 Local Variables 86

3.7 The this Reference 88
ST 1 Calling One Constructor from Another 90

3.8 Shape Classes 90
HT 2 Drawing Graphical Shapes 94

FUNDAMENTAL DATA
TYPES 99

4.1 Numbers 100

Number Types 100
Constants 102

ST 1 Big Numbers 106

4.2 Arithmetic 107

Arithmetic Operators 107
Increment and Decrement 107
Integer Division and Remainder 108
Powers and Roots 109
Converting Floating-Point Numbers
to Integers 110

ST 2 Avoiding Negative Remainders 112

ST 3 Combining Assignment and Arithmetic 113

ST 4 Instance Methods and Static Methods 113

4.3 Input and Output 114

Reading Input 114
Formatted Output 115

HT 1 Carrying Out Computations 118

WE 1 Computing the Volume and Surface Area of
a Pyramid 121

4.4 PROBLEM SOLVING First Do it By Hand 121
WE 2 Computing Travel Time 122

4.5 Strings 122

The String Type 122
Concatenation 123
String Input 124
Escape Sequences 124
Strings and Characters 124
Substrings 125

ST 5 Using Dialog Boxes for Input and
Output 128

DECISIONS 131

5.1 The if Statement 132
ST 1 The Conditional Operator 137

5.2 Comparing Values 137

Relational Operators 138
Comparing Floating-Point Numbers 139
Comparing Strings 140
Comparing Objects 141
Testing for null 141

HT 1 Implementing an if Statement 143

WE 1 Extracting the Middle 146

5.3 Multiple Alternatives 146
ST 2 The switch Statement 148

5.4 Nested Branches 149
ST 3 Block Scope 154

ST 4 Enumeration Types 155

5.5 PROBLEM SOLVING Flowcharts 156

5.6 PROBLEM SOLVING Selecting Test
Cases 159
ST 5 Logging 161

5.7 Boolean Variables and Operators 161
ST 6 Short-Circuit Evaluation of Boolean

Operators 165

ST 7 De Morgan’s Law 165

5.8 APPLICATION Input Validation 166

LOOPS 171

6.1 The while Loop 172

6.2 PROBLEM SOLVING Hand-Tracing 179

6.3 The for Loop 183
ST 1 Variables Declared in a for Loop

Header 189

6.4 The do Loop 190

6.5 APPLICATION Processing Sentinel
Values 192
ST 2 Redirection of Input and Output 194

ST 3 The “Loop and a Half” Problem 194

ST 4 The break and continue Statements 195

6.6 PROBLEM SOLVING Storyboards 197

6.7 Common Loop Algorithms 199

Sum and Average Value 199
Counting Matches 200

4

5

6

bbjeo_fm.indd 20 11/27/18 1:37 PM

Contents xxi

Finding the First Match 200
Prompting Until a Match is Found 201
Maximum and Minimum 201
Comparing Adjacent Values 202

HT 1 Writing a Loop 203

WE 1 Credit Card Processing 206

6.8 Nested Loops 206
WE 2 Manipulating the Pixels in an Image 209

6.9 APPLICATION Random Numbers and
Simulations 209

Generating Random Numbers 210
The Monte Carlo Method 211

6.10 Using a Debugger 213
HT 2 Debugging 215

WE 3 A Sample Debugging Session 217

ARRAYS AND ARRAY
LISTS 221

7.1 Arrays 222

Declaring and Using Arrays 222
Array References 225
Using Arrays with Methods 226
Partially Filled Arrays 226

ST 1 Methods with a Variable Number of
Arguments 229

7.2 The Enhanced for Loop 230

7.3 Common Array Algorithms 232

Filling 232
Sum and Average Value 232
Maximum and Minimum 232
Element Separators 232
Linear Search 233
Removing an Element 234
Inserting an Element 234
Swapping Elements 236
Copying Arrays 237
Reading Input 238

ST 2 Sorting with the Java Library 240

7.4 PROBLEM SOLVING Adapting
Algorithms 240
HT 1 Working with Arrays 242

WE 1 Rolling the Dice 245

7.5 PROBLEM SOLVING Discovering Algorithms by
Manipulating Physical Objects 245

7.6 Two-Dimensional Arrays 248

Declaring Two-Dimensional Arrays 248
Accessing Elements 249
Locating Neighboring Elements 250
Accessing Rows and Columns 251
Two-Dimensional Array Parameters 252

WE 2 A World Population Table 253

ST 3 Two-Dimensional Arrays with Variable
Row Lengths 254

ST 4 Multidimensional Arrays 255

7.7 Array Lists 255

Declaring and Using Array Lists 255
Using the Enhanced for Loop with
Array Lists 258
Copying Array Lists 259
Wrappers and Auto-boxing 259
Using Array Algorithms with Array Lists 260
Storing Input Values in an Array List 261
Removing Matches 261
Choosing Between Array Lists and Arrays 262

ST 5 The Diamond Syntax 264

7.8 Regression Testing 264

DESIGNING CLASSES 271

8.1 Discovering Classes 272

8.2 Designing Good Methods 273

Providing a Cohesive Public Interface 273
Minimizing Dependencies 274
Separating Accessors and Mutators 275
Minimizing Side Effects 276

ST 1 Call by Value and Call by Reference 278

8.3 PROBLEM SOLVING Patterns for
Object Data 282

Keeping a Total 282
Counting Events 283
Collecting Values 283
Managing Properties of an Object 284
Modeling Objects with Distinct States 284
Describing the Position of an Object 285

8.4 Static Variables and Methods 286
ST 2 Alternative Forms of Instance and Static

Variable Initialization 289

ST 3 Static Imports 290

8.5 PROBLEM SOLVING Solve a Simpler
Problem First 291

7

8

bbjeo_fm.indd 21 11/27/18 1:37 PM

xxii Contents

8.6 Packages 295

Organizing Related Classes into Pack ages 295
Importing Packages 296
Package Names 297
Packages and Source Files 297

ST 4 Package Access 298

HT 1 Programming with Packages 299

8.7 Unit Test Frameworks 300

INHERITANCE 305

9.1 Inheritance Hierarchies 306

9.2 Implementing Subclasses 310

9.3 Overriding Methods 314
ST 1 Calling the Superclass Constructor 318

9.4 Polymorphism 319
ST 2 Dynamic Method Lookup and the Implicit

Parameter 322

ST 3 Abstract Classes 323

ST 4 Final Methods and Classes 324

ST 5 Protected Access 324

HT 1 Developing an Inheritance Hierarchy 325

WE 1 Implementing an Employee Hierarchy for
Payroll Processing 330

9.5 Object: The Cosmic Superclass 330

Overriding the toString Method 330
The equals Method 332
The instanceof Operator 333

ST 6 Inheritance and the toString Method 335

ST 7 Inheritance and the equals Method 336

INTERFACES 339

10.1 Using Interfaces for Algorithm
Reuse 340

Discovering an Interface Type 340
Declaring an Interface Type 341
Implementing an Interface Type 343
Comparing Interfaces and Inheritance 345

ST 1 Constants in Interfaces 346

ST 2 Nonabstract Interface Methods 347

10.2 Working with Interface Variables 348

Converting from Classes to Interfaces 348
Invoking Methods on Interface Variables 349
Casting from Interfaces to Classes 349

WE 1 Investigating Number Sequences 350

10.3 The Comparable Interface 350
ST 3 The clone Method and the Cloneable

Interface 352

10.4 Using Interfaces for Callbacks 355
ST 4 Lambda Expressions 358

ST 5 Generic Interface Types 360

10.5 Inner Classes 360

10.6 Mock Objects 361

10.7 Event Handling 363

Listening to Events 363
Using Inner Classes for Listeners 365

10.8 Building Applications with Buttons 368

10.9 Processing Timer Events 371

10.10 Mouse Events 374
ST 6 Keyboard Events 377

ST 7 Event Adapters 378

INPUT/OUTPUT AND
EXCEPTION HANDLING 383

11.1 Reading and Writing Text Files 384
ST 1 Reading Web Pages 387

ST 2 File Dialog Boxes 387

ST 3 Character Encodings 388

11.2 Text Input and Output 389

Reading Words 389
Reading Characters 390
Classifying Characters 390
Reading Lines 390
Scanning a String 392
Converting Strings to Numbers 392
Avoiding Errors When Reading Numbers 392
Mixing Number, Word, and Line Input 393
Formatting Output 394

ST 4 Regular Expressions 395

ST 5 Reading an Entire File 396

11.3 Command Line Arguments 396
HT 1 Processing Text Files 399

WE 1 Analyzing Baby Names 403

11.4 Exception Handling 403

Throwing Exceptions 403
Catching Exceptions 405
Checked Exceptions 407
Closing Resources 409
Designing Your Own Exception Types 410

9

10

11

bbjeo_fm.indd 22 11/27/18 1:37 PM

Contents xxiii

ST 6 Assertions 411

ST 7 The try/finally Statement 412

11.5 APPLICATION Handling Input Errors 412

OBJECT-ORIENTED
DESIGN 419

12.1 Classes and Their Responsibilities 420

Discovering Classes 420
The CRC Card Method 421

12.2 Relationships Between Classes 423

Dependency 423
Aggregation 424
Inheritance 425

HT 1 Using CRC Cards and UML Diagrams in
Program Design 426

ST 1 Attributes and Methods in UML
Diagrams 426

ST 2 Multiplicities 427

ST 3 Aggregation, Association, and
Composition 427

12.3 APPLICATION Printing an Invoice 428

Requirements 429
CRC Cards 429
UML Diagrams 432
Method Documentation 432
Implementation 434

WE 1 Simulating an Automatic Teller Machine 439

RECURSION*
(ETEXT ONLY) 443

13.1 Triangle Numbers 444
HT 1 Thinking Recursively 448

WE 1 Finding Files 452

13.2 Recursive Helper Methods 452

13.3 The E�ciency of Recursion 453

13.4 Permutations 459

13.5 Mutual Recursion 463

13.6 Backtracking 469
WE 2 Towers of Hanoi 475

SORTING AND SEARCHING*
(ETEXT ONLY) 477

14.1 Selection Sort 478

14.2 Pro�ling the Selection Sort
Algorithm 481

14.3 Analyzing the Performance of the
Selection Sort Algorithm 484
ST 1 Oh, Omega, and Theta 486

ST 2 Insertion Sort 487

14.4 Merge Sort 488

14.5 Analyzing the Merge Sort Algorithm 491
ST 3 The Quicksort Algorithm 493

14.6 Searching 495

Linear Search 495
Binary Search 497

14.7 PROBLEM SOLVING Estimating the Running
Time of an Algorithm 500

Linear Time 500
Quadratic Time 501
The Triangle Pattern 502
Logarithmic Time 503

14.8 Sorting and Searching in the Java
Library 504

Sorting 504
Binary Search 505
Comparing Objects 505

ST 4 The Comparator Interface 506

ST 5 Comparators with Lambda Expressions 507

WE 1 Enhancing the Insertion Sort Algorithm 507

THE JAVA COLLECTIONS
FRAMEWORK*
(ETEXT ONLY) 511

15.1 An Overview of the Collections
Framework 512

15.2 Linked Lists 514

The Structure of Linked Lists 515
The LinkedList Class of the Java Collections
Framework 516
List Iterators 516

15.3 Sets 520

Choosing a Set Implementation 520
Working with Sets 522

12

13

14

15

*See your eText or visit www.wiley.com/go/bjeo7.

bbjeo_fm.indd 23 11/27/18 1:37 PM

xxiv Contents

*See your eText or visit www.wiley.com/go/bjeo7.

15.4 Maps 525
ST 1 Updating Map Entries 527

HT 1 Choosing a Collection 527

WE 1 Word Frequency 528

ST 2 Hash Functions 529

15.5 Stacks, Queues, and Priority Queues 531

Stacks 531
Queues 532
Priority Queues 533

15.6 Stack and Queue Applications 534

Balancing Parentheses 534
Evaluating Reverse Polish Expressions 535
Evaluating Algebraic Expressions 537
Backtracking 540

ST 3 Reverse Polish Notation 542

WE 2 Simulating a Queue of Waiting
Customers 543

APPENDIX A THE BASIC LATIN AND LATIN-1 SUBSETS
OF UNICODE A-1

APPENDIX B JAVA OPERATOR SUMMARY A-5

APPENDIX C JAVA RESERVED WORD SUMMARY A-7

APPENDIX D THE JAVA LIBRARY A-9

APPENDIX E JAVA LANGUAGE CODING
GUIDELINES A-29

APPENDIX F TOOL SUMMARY (ETEXT ONLY)

APPENDIX G NUMBER SYSTEMS (ETEXT ONLY)

APPENDIX H UML SUMMARY (ETEXT ONLY)

APPENDIX I JAVA SYNTAX SUMMARY (ETEXT ONLY)

APPENDIX J HTML SUMMARY (ETEXT ONLY)

GLOSSARY G-1

INDEX I-1

CREDITS C-1

QUICK REFERENCE C-3

bbjeo_fm.indd 24 11/27/18 1:37 PM

Contents xxv

ALPHABETICAL LIST OF SYNTAX BOXES

Arrays 223
Array Lists 256
Assignment 31

Calling a Superclass Method 315
Cast 110
Catching Exceptions 406
Class Declaration 68
Comparisons 138
Constant Declaration 104
Constructor with Superclass Initializer 318

Declaring an Interface 342

for Statement 183

if Statement 134
Implementing an Interface 343
Importing a Class from a Package 43
Input Statement 115
Instance Variable Declaration 63

Java Program 12

Object Construction 39

Package Speci�cation 296

Subclass Declaration 311

The Enhanced for Loop 231
The instanceof Operator 334
The throws Clause 408
The try-with-resources Statement 409
Throwing an Exception 403
Two-Dimensional Array Declaration 249

while Statement 173

Variable Declaration 27

bbjeo_fm.indd 25 11/27/18 1:37 PM

xxvi Special Features

© Steve Simzer/iStockphoto.

CHAPTER

© John Bell/iStockphoto.

Programming
Tips

Special Topics Computing &
Society

Backup Copies 10 Computers Are Everywhere 5

Choose Descriptive
Variable Names 32

Learn By Trying 37

Don’t Memorize—Use
Online Help 43

Variable Type Inference 33

Testing Classes in an Interactive
Environment 45

Computer Monopoly 49

The javadoc Utility 72 Calling One Constructor
from Another 90

Electronic Voting 83

Do Not Use Magic Numbers 106

Spaces in Expressions 112

Reading Exception Reports 127

Big Numbers 106

Avoiding Negative
Remainders 112

Combining Assignment
and Arithmetic 113

Instance Methods and
Static Methods 113

Using Dialog Boxes for Input
and Output 128

Bugs in Silicon 114

International Alphabets
and Unicode 128

Brace Layout 135

Always Use Braces 135

Tabs 136

Avoid Duplication in Branches 136

Hand-Tracing 153

Make a Schedule and Make Time
for Unexpected Problems 160

The Conditional Operator 137

The switch Statement 148

Block Scope 154

Enumeration Types 155

Logging 161

Short-Circuit Evaluation of
Boolean Operators 165

De Morgan’s Law 165

Dysfunctional Computerized

Systems 145

Arti�cial Intelligence 168

Use for Loops for Their
Intended Purpose Only 188

Choose Loop Bounds That
Match Your Task 188

Count Iterations 189

Flowcharts for Loops 191

Variables Declared in a
for Loop Header 189

Redirection of Input and Output 194

The Loop-and-a-Half Problem 194

The break and continue
Statements 195

Digital Piracy 182

The First Bug 217

Common
Errors

How Tos
 and

Worked Examples

1 Introduction Omitting Semicolons 13

Misspelling Words 14

Describing an Algorithm
with Pseudocode 18

Writing an Algorithm for
Tiling a Floor 20

2 Using Objects Using Undeclared or
Uninitialized Variables 32

Confusing Variable Declarations
and Assignment Statements 32

Trying to Invoke a Constructor Like
a Method 40

How Many Days Have You
Been Alive? 46

Working with Pictures 46

3 Implementing Classes Declaring a Constructor as void 72

Ignoring Parameter Variables 77

Duplicating Instance Variables
in Local Variables 86

Providing Unnecessary
Instance Variables 87

Forgetting to Initialize Object
References in a Constructor 87

Implementing a Class 78

Making a Simple Menu 81

Drawing Graphical Shapes 94

4 Fundamental
Data Types

Unintended Integer Division 111

Unbalanced Parentheses 112

Carrying out Computations 118

Computing the Volume and
Surface Area of a Pyramid 121

Computing Travel Time 122

5 Decisions A Semicolon After the
if Condition 134

Using == to Compare Strings 143

The Dangling else Problem 152

Combining Multiple
Relational Operators 164

Confusing && and || Conditions 164

Implementing an
if Statement 143

Extracting the Middle 146

6 Loops Don’t Think “Are We There Yet?” 177

In�nite Loops 177

O�-by-One Errors 178

Writing a Loop 203

Credit Card Processing 206

Manipulating the Pixels
in an Image 209

Debugging 215

A Sample Debugging Session 217

bbjeo_fm.indd 26 11/27/18 2:12 PM

Special Features xxvii

© Eric Isselé/iStockphoto.
© Eric Isselé/iStockphoto. © Media Bakery.

Programming
Tips

Special Topics Computing &
Society

Backup Copies 10 Computers Are Everywhere 5

Choose Descriptive
Variable Names 32

Learn By Trying 37

Don’t Memorize—Use
Online Help 43

Variable Type Inference 33

Testing Classes in an Interactive
Environment 45

Computer Monopoly 49

The javadoc Utility 72 Calling One Constructor
from Another 90

Electronic Voting 83

Do Not Use Magic Numbers 106

Spaces in Expressions 112

Reading Exception Reports 127

Big Numbers 106

Avoiding Negative
Remainders 112

Combining Assignment
and Arithmetic 113

Instance Methods and
Static Methods 113

Using Dialog Boxes for Input
and Output 128

Bugs in Silicon 114

International Alphabets
and Unicode 128

Brace Layout 135

Always Use Braces 135

Tabs 136

Avoid Duplication in Branches 136

Hand-Tracing 153

Make a Schedule and Make Time
for Unexpected Problems 160

The Conditional Operator 137

The switch Statement 148

Block Scope 154

Enumeration Types 155

Logging 161

Short-Circuit Evaluation of
Boolean Operators 165

De Morgan’s Law 165

Dysfunctional Computerized

Systems 145

Arti�cial Intelligence 168

Use for Loops for Their
Intended Purpose Only 188

Choose Loop Bounds That
Match Your Task 188

Count Iterations 189

Flowcharts for Loops 191

Variables Declared in a
for Loop Header 189

Redirection of Input and Output 194

The Loop-and-a-Half Problem 194

The break and continue
Statements 195

Digital Piracy 182

The First Bug 217

Common
Errors

How Tos
 and

Worked Examples

1 Introduction Omitting Semicolons 13

Misspelling Words 14

Describing an Algorithm
with Pseudocode 18

Writing an Algorithm for
Tiling a Floor 20

2 Using Objects Using Undeclared or
Uninitialized Variables 32

Confusing Variable Declarations
and Assignment Statements 32

Trying to Invoke a Constructor Like
a Method 40

How Many Days Have You
Been Alive? 46

Working with Pictures 46

3 Implementing Classes Declaring a Constructor as void 72

Ignoring Parameter Variables 77

Duplicating Instance Variables
in Local Variables 86

Providing Unnecessary
Instance Variables 87

Forgetting to Initialize Object
References in a Constructor 87

Implementing a Class 78

Making a Simple Menu 81

Drawing Graphical Shapes 94

4 Fundamental
Data Types

Unintended Integer Division 111

Unbalanced Parentheses 112

Carrying out Computations 118

Computing the Volume and
Surface Area of a Pyramid 121

Computing Travel Time 122

5 Decisions A Semicolon After the
if Condition 134

Using == to Compare Strings 143

The Dangling else Problem 152

Combining Multiple
Relational Operators 164

Confusing && and || Conditions 164

Implementing an
if Statement 143

Extracting the Middle 146

6 Loops Don’t Think “Are We There Yet?” 177

In�nite Loops 177

O�-by-One Errors 178

Writing a Loop 203

Credit Card Processing 206

Manipulating the Pixels
in an Image 209

Debugging 215

A Sample Debugging Session 217

bbjeo_fm.indd 27 11/27/18 2:12 PM

xxviii Special Features

© Steve Simzer/iStockphoto.

CHAPTER

© John Bell/iStockphoto.

Programming
Tips

Special Topics Computing &
Society

Use Arrays for Sequences of
Related Items 228

Make Parallel Arrays into
Arrays of Objects 228

Batch Files and Shell Scripts 266

Methods with a Variable
Number of Arguments 229

Sorting with the Java Library 240

Two-Dimensional Arrays
with Variable Row Lengths 254

Multidimensional Arrays 255

The Diamond Syntax 264

Computer Viruses 229

Liability for Software
Malfunction 267

Consistency 277

Minimize the Use of
Static Methods 289

Call by Value and Call
by Reference 278

Alternative Forms of Instance
and Static Variable Initialization 289

Static Imports 290

Package Access 298

Personal Computing 302

Use a Single Class for Variation
in Values, Inheritance for
Variation in Behavior 309

Calling the Superclass
Constructor 318

Dynamic Method Lookup and
the Implicit Parameter 322

Abstract Classes 323

Final Methods and Classes 324

Protected Access 324

Inheritance and the
toString Method 335

Inheritance and the
equals Method 336

Who Controls the Internet? 337

Comparing Integers and Floating-
Point Numbers 351

Constants in Interfaces 346

Nonabstract Interface Methods 347

The clone Method and the
Cloneable Interface 352

Lambda Expressions 358

Generic Interface Types 360

Keyboard Events 377

Event Adapters 378

Open Source and
Free Software 379

Throw Early, Catch Late 411

Do Not Squelch Exceptions 411

Do Throw Speci�c
Exceptions 411

Reading Web Pages 387

File Dialog Boxes 387

Character Encodings 388

Regular Expressions 395

Reading an Entire File 396

Assertions 411

The try/finally Statement 412

Encryption Algorithms 402

The Ariane Rocket Incident 417

Common
Errors

How Tos
 and

Worked Examples

7 Arrays and Array Lists Bounds Errors 227

Uninitialized and
Un�lled Arrays 227

Underestimating the
Size of a Data Set 240

Length and Size 264

Working with Arrays 242

Rolling the Dice 245

A World Population Table 253

8 Designing Classes Trying to Access Instance
Variables in Static Methods 288

Confusing Dots 298

Programming with Packages 299

9 Inheritance Replicating Instance Variables
from the Superclass 313

Confusing Super- and
Subclasses 313

Accidental Overloading 317

Forgetting to Use super
When Invoking a
Superclass Method 318

Don’t Use Type Tests 335

Developing an
Inheritance Hierarchy 325

Implementing an
Employee Hierarchy for
Payroll Processing 330

10 Interfaces Forgetting to Declare
Implementing Methods
as Public 346

Trying to Instantiate an Interface 346

Modifying Parameter Types
in the Implementing Method 367

Trying to Call Listener Methods 368

Forgetting to Attach a Listener 371

Forgetting to Repaint 373

Investigating Number
Sequences 350

11 Input/Output and
Exception Handling

Backslashes in File Names 386

Constructing a Scanner
with a String 386

Processing Text Files 399

Analyzing Baby Names 403

bbjeo_fm.indd 28 11/27/18 2:12 PM

Special Features xxix

© Eric Isselé/iStockphoto.
© Eric Isselé/iStockphoto. © Media Bakery.

Programming
Tips

Special Topics Computing &
Society

Use Arrays for Sequences of
Related Items 228

Make Parallel Arrays into
Arrays of Objects 228

Batch Files and Shell Scripts 266

Methods with a Variable
Number of Arguments 229

Sorting with the Java Library 240

Two-Dimensional Arrays
with Variable Row Lengths 254

Multidimensional Arrays 255

The Diamond Syntax 264

Computer Viruses 229

Liability for Software
Malfunction 267

Consistency 277

Minimize the Use of
Static Methods 289

Call by Value and Call
by Reference 278

Alternative Forms of Instance
and Static Variable Initialization 289

Static Imports 290

Package Access 298

Personal Computing 302

Use a Single Class for Variation
in Values, Inheritance for
Variation in Behavior 309

Calling the Superclass
Constructor 318

Dynamic Method Lookup and
the Implicit Parameter 322

Abstract Classes 323

Final Methods and Classes 324

Protected Access 324

Inheritance and the
toString Method 335

Inheritance and the
equals Method 336

Who Controls the Internet? 337

Comparing Integers and Floating-
Point Numbers 351

Constants in Interfaces 346

Nonabstract Interface Methods 347

The clone Method and the
Cloneable Interface 352

Lambda Expressions 358

Generic Interface Types 360

Keyboard Events 377

Event Adapters 378

Open Source and
Free Software 379

Throw Early, Catch Late 411

Do Not Squelch Exceptions 411

Do Throw Speci�c
Exceptions 411

Reading Web Pages 387

File Dialog Boxes 387

Character Encodings 388

Regular Expressions 395

Reading an Entire File 396

Assertions 411

The try/finally Statement 412

Encryption Algorithms 402

The Ariane Rocket Incident 417

Common
Errors

How Tos
 and

Worked Examples

7 Arrays and Array Lists Bounds Errors 227

Uninitialized and
Un�lled Arrays 227

Underestimating the
Size of a Data Set 240

Length and Size 264

Working with Arrays 242

Rolling the Dice 245

A World Population Table 253

8 Designing Classes Trying to Access Instance
Variables in Static Methods 288

Confusing Dots 298

Programming with Packages 299

9 Inheritance Replicating Instance Variables
from the Superclass 313

Confusing Super- and
Subclasses 313

Accidental Overloading 317

Forgetting to Use super
When Invoking a
Superclass Method 318

Don’t Use Type Tests 335

Developing an
Inheritance Hierarchy 325

Implementing an
Employee Hierarchy for
Payroll Processing 330

10 Interfaces Forgetting to Declare
Implementing Methods
as Public 346

Trying to Instantiate an Interface 346

Modifying Parameter Types
in the Implementing Method 367

Trying to Call Listener Methods 368

Forgetting to Attach a Listener 371

Forgetting to Repaint 373

Investigating Number
Sequences 350

11 Input/Output and
Exception Handling

Backslashes in File Names 386

Constructing a Scanner
with a String 386

Processing Text Files 399

Analyzing Baby Names 403

bbjeo_fm.indd 29 11/27/18 2:12 PM

xxx Special Features

© Steve Simzer/iStockphoto.

CHAPTER

© John Bell/iStockphoto.

Programming
Tips

Special Topics Computing &
Society

Attributes and Methods in
UML Diagrams 426

Multiplicities 427

Aggregation, Association,
and Composition 427

Electronic Privacy 439

The Limits of Computation 461

Oh, Omega, and Theta 486

Insertion Sort 487

The Quicksort Algorithm 493

The Comparator Interface 506

Comparators with
Lambda Expressions 507

The First Programmer 499

Use Interface References to
Manipulate Data Structures 524

Updating Map Entries 527

Hash Functions 529

Reverse Polish Notation 542

Standardization 519

Common
Errors

How Tos
 and

Worked Examples

12 Object-Oriented Design Using CRC Cards and
UML Diagrams in
Program Design 426

Simulating an Automatic
Teller Machine 439

13 Recursion*
(eTEXT ONLY)

In�nite Recursion 447

Tracing Through Recursive
Methods 447

Thinking Recursively 448

Finding Files 452

Towers of Hanoi 475

14 Sorting and Searching*
(eTEXT ONLY)

The compareTo Method Can
Return Any Integer,
Not Just –1, 0, and 1 506

Enhancing the Insertion
Sort Algorithm 507

15 The Java Collections
Framework*
(eTEXT ONLY)

Choosing a Collection 527

Word Frequency 528

Simulating a Queue of
Waiting Customers 543

*See your eText or visit www.wiley.com/go/bjeo7.

bbjeo_fm.indd 30 11/27/18 2:12 PM

Special Features xxxi

© Eric Isselé/iStockphoto.
© Eric Isselé/iStockphoto. © Media Bakery.

Programming
Tips

Special Topics Computing &
Society

Attributes and Methods in
UML Diagrams 426

Multiplicities 427

Aggregation, Association,
and Composition 427

Electronic Privacy 439

The Limits of Computation 461

Oh, Omega, and Theta 486

Insertion Sort 487

The Quicksort Algorithm 493

The Comparator Interface 506

Comparators with
Lambda Expressions 507

The First Programmer 499

Use Interface References to
Manipulate Data Structures 524

Updating Map Entries 527

Hash Functions 529

Reverse Polish Notation 542

Standardization 519

Common
Errors

How Tos
 and

Worked Examples

12 Object-Oriented Design Using CRC Cards and
UML Diagrams in
Program Design 426

Simulating an Automatic
Teller Machine 439

13 Recursion*
(eTEXT ONLY)

In�nite Recursion 447

Tracing Through Recursive
Methods 447

Thinking Recursively 448

Finding Files 452

Towers of Hanoi 475

14 Sorting and Searching*
(eTEXT ONLY)

The compareTo Method Can
Return Any Integer,
Not Just –1, 0, and 1 506

Enhancing the Insertion
Sort Algorithm 507

15 The Java Collections
Framework*
(eTEXT ONLY)

Choosing a Collection 527

Word Frequency 528

Simulating a Queue of
Waiting Customers 543

*See your eText or visit www.wiley.com/go/bjeo7.

bbjeo_fm.indd 31 11/27/18 2:12 PM

bbjeo_fm.indd 32 11/27/18 1:37 PM

1

C H A P T E R 1
INTRODUCTION

C H A P T E R G O A L S

To learn about computers
and programming

To compile and run your first
Java program

To recognize compile-time and
run-time errors

To describe an algorithm with pseudocode

C H A P T E R C O N T E N T S

© JanPietruszka/iStockphoto.

1.1 COMPUTER PROGRAMS 2

1.2 THE ANATOMY OF A COMPUTER 3

C&S Computers Are Everywhere 5

1.3 THE JAVA PROGRAMMING
LANGUAGE 5

1.4 BECOMING FAMILIAR WITH YOUR
PROGRAMMING ENVIRONMENT 7

PT 1 Backup Copies 10

1.5 ANALYZING YOUR FIRST
PROGRAM 11

SYN Java Program 12
CE 1 Omitting Semicolons 13

1.6 ERRORS 13

CE 2 Misspelling Words 14

1.7 PROBLEM SOLVING:
ALGORITHM DESIGN 15

HT 1 Describing an Algorithm with
Pseudocode 18

WE 1 Writing an Algorithm for Tiling a Floor 20

bjeo_ch01p.indd 1 11/21/18 5:11 PM

2

Just as you gather tools, study a project, and make a plan for
tackling it, in this chapter you will gather up the basics you
need to start learning to program. After a brief introduction
to computer hardware, software, and programming in
general, you will learn how to write and run your first
Java program. You will also learn how to diagnose and
fix programming errors, and how to use pseudocode to
describe an algorithm—a step-by-step description of how
to solve a problem—as you plan your computer programs.

1.1 Computer Programs
You have probably used a computer for work or fun. Many people use computers for
everyday tasks such as electronic banking or writing a term paper. Computers are
good for such tasks. They can handle repetitive chores, such as totaling up numbers
or placing words on a page, without getting bored or exhausted.

The flexibility of a computer is quite an amazing phenomenon. The same machine
can balance your checkbook, lay out your term paper, and play a game. In contrast,
other machines carry out a much nar rower range of tasks; a car drives and a toaster
toasts. Computers can carry out a wide range of tasks because they execute different
programs, each of which directs the computer to work on a specific task.

The computer itself is a machine that stores data (numbers, words, pictures), inter-
acts with devices (the monitor, the sound system, the printer), and executes programs.
A computer program tells a computer, in minute detail, the sequence of steps that
are needed to fulfill a task. The physical computer and periph eral devices are collec-
tively called the hardware. The programs the computer executes are called the
soft ware.

Today’s computer programs are so sophisticated that it is hard to believe that they
are composed of extremely primitive instructions. A typical instruction may be one
of the following:

• Put a red dot at a given screen position.
• Add up two numbers.
• If this value is negative, continue the program at a certain instruction.

The computer user has the illusion of smooth interaction because a program contains
a huge number of such instructions, and because the computer can execute them at
great speed.

The act of designing and implementing computer programs is called program-
ming. In this book, you will learn how to program a computer—that is, how to direct
the computer to execute tasks.

To write a computer game with motion and sound effects or a word processor
that supports fancy fonts and pictures is a complex task that requires a team of many
highly-skilled programmers. Your first programming efforts will be more mundane.
The concepts and skills you learn in this book form an important foundation, and
you should not be disappointed if your first programs do not rival the sophis ticated
software that is familiar to you. Actually, you will find that there is an immense thrill
even in sim ple programming tasks. It is an amazing experience to see the computer

Computers
execute very basic
instructions in
rapid succession.

A computer program
is a sequence
of instructions
and decisions.

Programming is the
act of designing
and implementing
computer programs.

© JanPietruszka/iStockphoto.

precisely and quickly carry out a task that would take you hours of drudgery, to
make small changes in a program that lead to immediate improvements, and to see the
computer become an extension of your mental powers.

1.2 The Anatomy of a Computer
To understand the programming process, you need to have a rudimentary under-
standing of the building blocks that make up a computer. We will look at a personal
computer. Larger computers have faster, larger, or more powerful components, but
they have fundamentally the same design.

At the heart of the computer lies the central
processing unit (CPU) (see Figure 1). The inside
wiring of the CPU is enormously complicated.
For example, the Intel Core processor (a popular
CPU for per sonal computers at the time of this
writing) is composed of several hundred million
structural elements, called transistors.

The CPU performs program control and data
processing. That is, the CPU locates and exe-
cutes the program instructions; it carries out
arithmetic operations such as addition, subtrac-
tion, multiplication, and division; it fetches data
from external memory or devices and places
processed data into storage.

There are two kinds of storage. Primary stor-
age, or memory, is made from electronic circuits that can store data, provided they are
supplied with electric power. Secondary storage, usually a hard disk (see Figure 2)
or a solid-state drive, provides slower and less expensive storage that persists without
electricity. A hard disk consists of rotating platters, which are coated with a mag netic

© Amorphis/iStockphoto.

Figure 1 Central Processing Unit

The central
processing unit (CPU)
performs program
control and
data processing.

Storage devices
include memory and
secondary storage.

© PhotoDisc, Inc./Getty Images, Inc.

Figure 2 A Hard Disk

bjeo_ch01p.indd 2 11/21/18 5:11 PM

1.2 The Anatomy of a Computer 3

precisely and quickly carry out a task that would take you hours of drudgery, to
make small changes in a program that lead to immediate improvements, and to see the
computer become an extension of your mental powers.

1.2 The Anatomy of a Computer
To understand the programming process, you need to have a rudimentary under-
standing of the building blocks that make up a computer. We will look at a personal
computer. Larger computers have faster, larger, or more powerful components, but
they have fundamentally the same design.

At the heart of the computer lies the central
processing unit (CPU) (see Figure 1). The inside
wiring of the CPU is enormously complicated.
For example, the Intel Core processor (a popular
CPU for per sonal computers at the time of this
writing) is composed of several hundred million
structural elements, called transistors.

The CPU performs program control and data
processing. That is, the CPU locates and exe-
cutes the program instructions; it carries out
arithmetic operations such as addition, subtrac-
tion, multiplication, and division; it fetches data
from external memory or devices and places
processed data into storage.

There are two kinds of storage. Primary stor-
age, or memory, is made from electronic circuits that can store data, provided they are
supplied with electric power. Secondary storage, usually a hard disk (see Figure 2)
or a solid-state drive, provides slower and less expensive storage that persists without
electricity. A hard disk consists of rotating platters, which are coated with a mag netic

© Amorphis/iStockphoto.

Figure 1 Central Processing Unit

The central
processing unit (CPU)
performs program
control and
data processing.

Storage devices
include memory and
secondary storage.

© PhotoDisc, Inc./Getty Images, Inc.

Figure 2 A Hard Disk

bjeo_ch01p.indd 3 11/21/18 5:11 PM

4 Chapter 1 Introduction

material. A solid-state drive uses electronic components that can retain information
without power, and without moving parts.

To interact with a human user, a computer requires peripheral devices. The com-
puter transmits infor mation (called output) to the user through a display screen,
speakers, and printers. The user can enter information (called input) for the computer
by using a keyboard or a pointing device such as a mouse.

Some computers are self-contained units, whereas others are interconnected
through networks. Through the network cabling, the computer can read data and
programs from central storage locations or send data to other computers. To the user
of a networked computer, it may not even be obvious which data reside on the com-
puter itself and which are transmitted through the network.

Figure 3 gives a schematic overview of the architecture of a personal computer.
Program instructions and data (such as text, numbers, audio, or video) reside in sec-
ondary storage or elsewhere on the network. When a program is started, its instruc-
tions are brought into memory, where the CPU can read them. The CPU reads and
executes one instruction at a time. As directed by these instructions, the CPU reads
data, modifies it, and writes it back to memory or secondary storage. Some program
instruc tions will cause the CPU to place dots on the display screen or printer or to
vibrate the speaker. As these actions happen many times over and at great speed, the
human user will perceive images and sound. Some program instructions read user
input from the keyboard, mouse, touch sensor, or microphone. The program ana-
lyzes the nature of these inputs and then executes the next appropriate instruction.

Printer

Mouse/Trackpad

Keyboard

Microphone

Ports

CPU

Memory

Disk
controller

Secondary storage

Monitor

Speakers

Internet
Network
controller

Video camera

Figure 3 Schematic Design of a Personal Computer

bjeo_ch01p.indd 4 11/21/18 5:11 PM

1.3 The Java Programming Language 5

Computing & Society 1.1 Computers Are Everywhere

When computers were
first invented in the

1940s, a computer filled an entire
room. The photo below shows the
ENIAC (electronic numerical integrator
and computer), completed in 1946 at
the University of Pennsylvania. The
ENIAC was used by the military to
compute the trajectories of projectiles.
Nowadays, computing facilities of
search engines, Internet shops, and
social networks fill huge buildings
called data centers. At the other end of
the spectrum, computers are all around
us. Your cell phone has a computer
inside, as do many credit cards and fare
cards for public transit. A modern car
has several computers––to control the
engine, brakes, lights, and the radio.

The advent of ubiqui-
tous computing changed
many aspects of our
lives. Factories used
to employ people to
do repetitive assembly
tasks that are today car-
ried out by computer-
controlled robots, oper-
ated by a few people
who know how to
work with those com-
puters. Books, music,
and movies nowadays
are often consumed
on computers, and
computers are almost
always involved in their production.
The book that you are reading right

now could not have been written with-
out computers.

Knowing about computers and
how to program them has become an
essential skill in many careers. Engi-
neers design computer-controlled cars
and medical equipment that preserve
lives. Computer scientists develop
programs that help people come
together to support social causes. For
example, activists used social net-
works to share videos showing abuse
by repressive regimes, and this infor-
mation was instrumental in changing
public opinion.

As computers, large and small,
become ever more embedded in
our everyday lives, it is increasingly
important for everyone to understand
how they work, and how to work with
them. As you use this book to learn
how to program a computer, you will
develop a good understanding of com-
puting fundamentals that will make
you a more informed citizen and, per-
haps, a computing professional.

1.3 The Java Programming Language
In order to write a computer program, you need to provide a sequence of instructions
that the CPU can execute. A computer program consists of a large number of simple
CPU instructions, and it is tedious and error-prone to specify them one by one. For
that reason, high-level programming languages have been created. In a high-level

© Media Bakery.

© UPPA/Photoshot.

The ENIAC

© Maurice Savage/Alamy Limited.

This transit card contains a computer.

bjeo_ch01p.indd 5 11/29/18 3:53 PM

6 Chapter 1 Introduction

language, you specify the actions that your program should carry out. A compiler
translates the high-level instructions into the more detailed instructions (called
machine code) required by the CPU. Many different programming languages have
been designed for different purposes.

In 1991, a group led by James Gosling and Patrick
Naughton at Sun Microsystems designed a program-
ming language, code-named “Green”, for use in con-
sumer devices, such as intelligent television “set-top”
boxes. The language was designed to be simple, secure,
and usable for many dif ferent processor types. No cus-
tomer was ever found for this technology.

Gosling recounts that in 1994 the team realized,
“We could write a really cool browser. It was one of the
few things in the client/server main stream that needed
some of the weird things we’d done: architecture neu-
tral, real-time, reliable, secure.” Java was introduced to
an enthusiastic crowd at the SunWorld exhibition in
1995, together with a browser that ran applets—Java
code that can be located anywhere on the Internet.
The figure at right shows a typical example of an
applet.

Since then, Java has grown at a phenomenal rate.
Programmers have embraced the language because
it is easier to use than its closest rival, C++. In addi-
tion, Java has a rich library that makes it possible
to write portable programs that can bypass pro-
prietary operating systems—a feature that was
eagerly sought by those who wanted to be inde-
pendent of those proprietary systems and was bit-
terly fought by their ven dors. A “micro edition”
and an “enterprise edition” of the Java library
allow Java programmers to target hardware ranging from smart cards to the largest
Internet servers.

Table 1 Java Versions (since Version 1.0 in 1996)

Version Year Important New Features Version Year Important New Features

1.1 1997 Inner classes 6 2006 Library improvements

1.2 1998 Swing, Collections framework 7 2011 Small language changes and library
improvements

1.3 2000 Performance enhancements 8 2014 Function expressions, streams, new
date/time library

1.4 2002 Assertions, XML support 9 2017 Modules

5 2004 Generic classes, enhanced for
loop, auto-boxing,

enumerations, annotations

10, 11 2018 Versions with incremental
improvements are released

every six months

© James Sullivan/Getty Images.

James Gosling

An Applet for Visualizing Molecules

Java was originally
designed for
programming
consumer devices,
but it was first
successfully used
to write Internet
applets.

Because Java was designed for the Internet, it has two attributes that make it very
suitable for begin ners: safety and portability.

Java was designed so that anyone can execute programs in their browser without
fear. The safety features of the Java language ensure that a program is terminated if it
tries to do something unsafe. Having a safe environment is also helpful for anyone
learning Java. When you make an error that results in unsafe behavior, your program
is terminated and you receive an accurate error report.

The other benefit of Java is portability. The same Java program will run, without
change, on Windows, UNIX, Linux, or Macintosh. In order to achieve portability,
the Java compiler does not translate Java programs directly into CPU instructions.
Instead, compiled Java programs contain instructions for the Java virtual machine, a
program that simulates a real CPU. Portability is another benefit for the begin ning
student. You do not have to learn how to write programs for different platforms.

At this time, Java is firmly established as one of the most important languages for
general-purpose pro gramming as well as for computer science instruction. However,
although Java is a good language for beginners, it is not perfect, for three reasons.

Because Java was not specifically designed for students, no thought was given to
making it really sim ple to write basic programs. A certain amount of technical machin-
ery is necessary to write even the simplest programs. This is not a problem for profes-
sional programmers, but it can be a nuisance for beginning students. As you learn how
to program in Java, there will be times when you will be asked to be satisfied with a
preliminary explanation and wait for more complete detail in a later chapter.

Java has been extended many times during its life—see Table 1. In this book, we
assume that you have Java version 8 or later.

Finally, you cannot hope to learn all of Java in one course. The Java language itself
is relatively simple, but Java contains a vast set of library packages that are required to
write useful programs. There are pack ages for graphics, user-interface design, cryp-
tography, networking, sound, database storage, and many other purposes. Even
expert Java programmers cannot hope to know the contents of all of the packages—
they just use those that they need for particular projects.

Using this book, you should expect to learn a good deal about the Java language
and about the most important packages. Keep in mind that the central goal of this
book is not to make you memorize Java minutiae, but to teach you how to think
about programming.

1.4 Becoming Familiar with Your
Programming Environment

Many students find that the tools they need as programmers are very different from the
software with which they are familiar. You should spend some time making yourself
familiar with your programming environment. Because computer systems vary widely,
this book can only give an outline of the steps you need to follow. It is a good idea to
participate in a hands-on lab, or to ask a knowledgeable friend to give you a tour.

Step 1 Start the Java development environment.

Computer systems differ greatly in this regard. On many computers there is an inte-
grated development environment in which you can write and test your programs.

Java was designed to
be safe and portable,
benefiting both
Internet users
and students.

Java programs
are distributed as
instructions for a
virtual machine,
making them
platform-independent.

Java has a very
large library. Focus
on learning those
parts of the library
that you need for
your programming
projects.

Set aside time to
become familiar with
the programming
environment that
you will use for your
class work.

bjeo_ch01p.indd 6 11/21/18 5:11 PM

1.4 Becoming Familiar with Your Programming Environment 7

Because Java was designed for the Internet, it has two attributes that make it very
suitable for begin ners: safety and portability.

Java was designed so that anyone can execute programs in their browser without
fear. The safety features of the Java language ensure that a program is terminated if it
tries to do something unsafe. Having a safe environment is also helpful for anyone
learning Java. When you make an error that results in unsafe behavior, your program
is terminated and you receive an accurate error report.

The other benefit of Java is portability. The same Java program will run, without
change, on Windows, UNIX, Linux, or Macintosh. In order to achieve portability,
the Java compiler does not translate Java programs directly into CPU instructions.
Instead, compiled Java programs contain instructions for the Java virtual machine, a
program that simulates a real CPU. Portability is another benefit for the begin ning
student. You do not have to learn how to write programs for different platforms.

At this time, Java is firmly established as one of the most important languages for
general-purpose pro gramming as well as for computer science instruction. However,
although Java is a good language for beginners, it is not perfect, for three reasons.

Because Java was not specifically designed for students, no thought was given to
making it really sim ple to write basic programs. A certain amount of technical machin-
ery is necessary to write even the simplest programs. This is not a problem for profes-
sional programmers, but it can be a nuisance for beginning students. As you learn how
to program in Java, there will be times when you will be asked to be satisfied with a
preliminary explanation and wait for more complete detail in a later chapter.

Java has been extended many times during its life—see Table 1. In this book, we
assume that you have Java version 8 or later.

Finally, you cannot hope to learn all of Java in one course. The Java language itself
is relatively simple, but Java contains a vast set of library packages that are required to
write useful programs. There are pack ages for graphics, user-interface design, cryp-
tography, networking, sound, database storage, and many other purposes. Even
expert Java programmers cannot hope to know the contents of all of the packages—
they just use those that they need for particular projects.

Using this book, you should expect to learn a good deal about the Java language
and about the most important packages. Keep in mind that the central goal of this
book is not to make you memorize Java minutiae, but to teach you how to think
about programming.

1.4 Becoming Familiar with Your
Programming Environment

Many students find that the tools they need as programmers are very different from the
software with which they are familiar. You should spend some time making yourself
familiar with your programming environment. Because computer systems vary widely,
this book can only give an outline of the steps you need to follow. It is a good idea to
participate in a hands-on lab, or to ask a knowledgeable friend to give you a tour.

Step 1 Start the Java development environment.

Computer systems differ greatly in this regard. On many computers there is an inte-
grated development environment in which you can write and test your programs.

Java was designed to
be safe and portable,
benefiting both
Internet users
and students.

Java programs
are distributed as
instructions for a
virtual machine,
making them
platform-independent.

Java has a very
large library. Focus
on learning those
parts of the library
that you need for
your programming
projects.

Set aside time to
become familiar with
the programming
environment that
you will use for your
class work.

bjeo_ch01p.indd 7 11/21/18 5:11 PM

8 Chapter 1 Introduction

Figure 4
Running the
HelloPrinter
Program in an
Integrated
Development
Environment

Java program

Program output

Click to compile and run

On other computers you first launch an editor, a program that functions like a word
processor, in which you can enter your Java instructions; you then open a console
window and type commands to execute your program. You need to find out how to
get started with your environment.

Step 2 Write a simple program.

The traditional choice for the very first program in a new programming language is
a program that dis plays a simple greeting: “Hello, World!”. Let us follow that tradi-
tion. Here is the “Hello, World!” pro gram in Java:

public class HelloPrinter
{
 public static void main(String[] args)
 {
 System.out.println("Hello, World!");
 }
}

We will examine this program in the next section.
No matter which programming environment you use, you begin your activity by

typing the program statements into an editor window.
Create a new file and call it HelloPrinter.java, using the steps that are appropriate

for your environ ment. (If your environment requires that you supply a project name
in addition to the file name, use the name hello for the project.) Enter the program
instructions exactly as they are given above. Alternatively, locate the electronic copy
in this book’s companion code and paste it into your editor.

As you write this program, pay careful attention to the various symbols, and keep
in mind that Java is case sensitive. You must enter upper- and lowercase letters exactly
as they appear in the program listing. You cannot type MAIN or PrintLn. If you are not
careful, you will run into problems—see Common Error 1.2.

An editor is a
program for entering
and modifying
text, such as a Java
program.

Java is case sensitive.
You must be careful
about distinguishing
between upper- and
lowercase letters.

Step 3

Figure 5 Running the HelloPrinter Program in a Console Window

Run the program.

The process for running a program depends greatly on your programming environ-
ment. You may have to click a button or enter some commands. When you run the
test program, the message

Hello, World!

will appear somewhere on the screen (see Figure 4 and Figure 5).
In order to run your program, the Java compiler translates your source files (that

is, the statements that you wrote) into class files. (A class file contains instructions for
the Java virtual machine.) After the compiler has translated your source code into
virtual machine instructions, the virtual machine executes them. During execution,
the virtual machine accesses a library of pre-written code, including the implementa-
tions of the System and PrintStream classes that are necessary for displaying the
program’s output. Figure 6 summarizes the process of creating and running a Java
program. In some programming environments, the compiler and virtual machine are
essentially invisible to the programmer—they are automatically executed whenever
you ask to run a Java program. In other environments, you need to launch the com-
piler and virtual machine explicitly.

Step 4 Organize your work.

As a programmer, you write programs, try them out, and improve them. You store
your programs in files. Files are stored in folders or directories. A folder can contain

The Java compiler
translates source
code into class
files that contain
instructions for the
Java virtual machine.

CompilerEditor Virtual
Machine

Running
ProgramSource File

Class �les

Library �les

Figure 6 From Source Code to Running Program

bjeo_ch01p.indd 8 11/21/18 5:11 PM

1.4 Becoming Familiar with Your Programming Environment 9

Step 3

Figure 5 Running the HelloPrinter Program in a Console Window

Run the program.

The process for running a program depends greatly on your programming environ-
ment. You may have to click a button or enter some commands. When you run the
test program, the message

Hello, World!

will appear somewhere on the screen (see Figure 4 and Figure 5).
In order to run your program, the Java compiler translates your source files (that

is, the statements that you wrote) into class files. (A class file contains instructions for
the Java virtual machine.) After the compiler has translated your source code into
virtual machine instructions, the virtual machine executes them. During execution,
the virtual machine accesses a library of pre-written code, including the implementa-
tions of the System and PrintStream classes that are necessary for displaying the
program’s output. Figure 6 summarizes the process of creating and running a Java
program. In some programming environments, the compiler and virtual machine are
essentially invisible to the programmer—they are automatically executed whenever
you ask to run a Java program. In other environments, you need to launch the com-
piler and virtual machine explicitly.

Step 4 Organize your work.

As a programmer, you write programs, try them out, and improve them. You store
your programs in files. Files are stored in folders or directories. A folder can contain

The Java compiler
translates source
code into class
files that contain
instructions for the
Java virtual machine.

CompilerEditor Virtual
Machine

Running
ProgramSource File

Class �les

Library �les

Figure 6 From Source Code to Running Program

bjeo_ch01p.indd 9 11/21/18 5:11 PM

